

Intramolecular Dearomatizing [3 + 2] Annulation of α -Imino Carbenoids with Aryl Rings Furnishing 3,4-Fused Indole Skeletons

Tomoya Miura,* Yuuta Funakoshi, and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Supporting Information

ABSTRACT: The rhodium-catalyzed dearomatizing [3 + 2] annulation reaction of 4-(3-arylpropyl)-1,2,3-triazoles is described. It provides a straightforward synthetic pathway from simple 5-aryl-1-alkynes leading to tricyclic 3,4-fused dihydroindoles via the corresponding 1,2,3-triazoles.

A 3,4-fused indole skeleton presents a key structural motif of a number of natural products which exhibit a wide range of biological activities. These include dehydrobufotenine,¹ chuangxinmycin,² hapalindole U,³ welwitindolinones,⁴ and the *Ergot* family such as lysergic acid,⁵ chanoclavine-I,⁶ and rugulovasine A^7 (Figure 1).

Figure 1. Natural products with 3,4-fused indole skeletons.

Thus, the development of efficient methods to create such a structural motif starting from readily available compounds has been highly desired.⁸ Now, we report an intramolecular dearomatizing [3 + 2] annulation reaction⁹ of 4-(3-arylpropyl)-1,2,3-triazoles. This new reaction constitutes a straightforward synthesis of 3,4-fused indoles starting from simple 5-aryl-1-alkynes in one pot (Figure 2).

Figure 2. Construction of 3,4-fused indoles from 5-aryl-1-alkynes.

N-Sulfonyl-1,2,3-triazoles are readily prepared from 1-alkynes and act as the convenient precursor of α -imino metal carbene complexes.^{10,11} The carbenoid carbon of the generated carbene complex is highly electrophilic, and the α -imino nitrogen is highly nucleophilic. Thus, the α -imino carbene complex behaves as a 1,3-dipole equivalent to participate in [3 + 2] annulation with unsaturated compounds of a nucleophilic character, forming five-membered heterocycles (eq 1).¹²

$$\underset{R^{1} \longrightarrow H}{\overset{N_{3}-R^{2}}{\longrightarrow} R^{1}} \xrightarrow{\overset{N}{\longrightarrow}} \underset{H}{\overset{N}} \overset{R^{2}}{\xrightarrow} \underset{H}{\overset{N^{2}}{\longrightarrow}} \underset{H}{\overset{N^{2}}{\longrightarrow}} \overset{N}{\xrightarrow} \underset{H}{\overset{N^{2}}{\longrightarrow}} \overset{N}{\xrightarrow} \underset{H}{\overset{N^{2}}{\longrightarrow}} \underset{H}{\overset{N^{2}}{\overset{N^{2}}{\longrightarrow}} \underset{H}{\overset{N^{2}}{\overset}} \underset{H}{\overset{N^{2}}{\overset{N^{2$$

The reactions with nitriles,^{10a} alkynes,^{10b,13} allenes,¹⁴ aldehydes,¹⁵ isocyanates,¹⁶ furans,¹⁷ and indoles¹⁸ afford the corresponding [3 + 2] cycloadducts. We have also disclosed¹⁹ that the reaction with $\alpha_{i}\beta$ -unsaturated aldehydes leads to the stereoselective production of 2,3-dihydropyrroles via the corresponding 4-oxazolines.¹⁵ We were next interested in whether a benzene ring can act as the dipolarophile to construct a dihydroindole skeleton.²⁰ Thus, we first examined an intermolecular reaction of a triazole with various benzene substrates including 1,2-dimethoxybenzene in the presence of rhodium(II) catalysts. However, no formation of the corresponding [3 + 2] cycloadduct was observed even at 140 °C under microwave irradiation. Next, an intramolecular reaction was examined using the triazole 1a possessing a 3phenylpropyl side chain, which was readily prepared from 5phenyl-1-pentyne and tosyl azide according to the procedure using copper(I) thiophene-2-carboxylate (CuTC).²¹ When the triazole 1a was treated with rhodium(II) pivalate dimer $[Rh_2(OCO^tBu)_4, 1.0 \text{ mol } \%]$ and 4 Å molecular sieves (MS) in 1,2-dichloroethane (DCE) at 80 °C for 3 h, the 3,4-fused 3a,7a-dihydroindole 2a was obtained in 92% isolated yield after chromatographic purification (Scheme 1).

The *cis* stereochemistry was determined by a single-crystal Xray analysis. We assume the following mechanism for the production of **2a**: a reversible ring-chain tautomerization of the triazole moiety of **1a** generates α -diazo imine **1a'**, which immediately reacts with rhodium(II) to afford α -imino rhodium carbene **A** with release of molecular nitrogen. The carbenoid carbon of **A** is electrophilic enough to induce the intramolecular attack of the phenyl ring in a 6-exo mode to furnish the

Received: December 13, 2013

Scheme 1. Dearomatizing Annulation Reaction of 1a

zwitterionic intermediate **B**. The anionic rhodium releases bonding electrons, which cause cyclization at the imino nitrogen. It should be noted that the reactivity of α -imino rhodium carbene **A** markedly contrasts with that of α -oxo rhodium carbene complexes; whereas the intermediate **A** serves as an 1,3-dipole equivalent because of the nucleophilic character of the imino nitrogen, a similar rhodium carbene complex generated from α -diazo ester **3** undergoes an intramolecular Büchner reaction to produce bicyclo[5.3.0]deca-1,3,5-triene **4** (eq 2).²²

The results shown in Table 1 delineate the scope of the [3 +2] annulation reaction. Substrates possessing a three-carbon tether smoothly reacted, and the corresponding products 2b-2e were isolated in yields ranging from 85% to 94%. The nitrogen- and sulfur-tethered substrates also underwent the [3 + 2] annulation reaction (2f and 2g). Of note was that the electron-deficient benzene ring successfully participated in the transformation (2i and 2k). With unsymmetrical metamonosubstituted substrates, the annulation occurred regioselectively at the less-hindered side (2j and 2k). It was possible, however, to install an angular methyl group at the bridgehead position of 2l by using a 3,5-xylyl-substituted substrate. Various substituents including a methyl group were suitable for the sulfonyl substituent (2m-2p). On the other hand, substrates possessing a shorter or longer tether, i.e., two- or four-carbon tether failed to undergo a similar intramolecular [3 + 2]annulation reaction due to structural constrains, giving a complex mixture.

The resulting 3,4-fused dihydroindoles could act as the diene partner of a Diels–Alder reaction (eq 3). Endo cycloaddition

^{*a*}Conditions: 1 (0.20 mmol), Rh₂(OCO^tBu)₄ (2 μ mol), and MS (40 mg) were heated in DCE (4 mL) at 80 °C for 3 h unless otherwise noted. Yield of isolated product after chromatography (average of two runs). ^{*b*}Using toluene (4 mL). ^{*c*}Purified by recrystallization.

selectively took place upon direct addition of *N*-methylmaleimide to the reaction mixtures containing **2a** and **2c** to afford the corresponding pentacyclic compounds **5** and **6**, respectively.

When manganese dioxide was directly added to the reaction mixture containing 2a, oxidative aromatization²³ took place to produce 3,4-fused indole 7 in 93% yield (eq 4). Thus, the sequential procedure in one pot provides a facile synthetic pathway from simple 1-alkynes to 3,4-fused indoles.

The present [3 + 2] annulation reaction was successfully extended to the synthesis of Uhle's ketone 10,²⁴ which have been often utilized in the synthesis of *Ergot* alkaloids^{5a} (Scheme 2). Initially, the triethylsilyl group of the dihydroindole **2e** was deprotected by treatment with tetrabutylammonium fluoride (TBAF). The subsequent oxidation of alcohol **8** with manganese dioxide afforded *N*-tosylated Uhle's ketone **9**,²⁵

Scheme 2. Synthesis of Uhle's Ketone

which was further converted into the Uhle's ketone $10\ \mbox{by}$ detosylation with potassium hydroxide. 26

The synthetic usefulness of the [3 + 2] annulation reaction was exemplified by its successful integration into a one-pot synthesis of 3,4-fused dihydroindoles 2 directly from 5-aryl-1alkynes 11–14 (Scheme 3). For example, 11, tosyl azide (1.0

Scheme 3. One-pot Synthesis Starting from 5-Aryl-1-alkynes

equiv), CuTC (10 mol %), Rh₂(OCO^tBu)₄ (1.0 mol %), MS, and DCE were placed together in a reaction vessel. The reaction mixture was stirred at room temperature for 12 h, during which **11** was converted to the triazole **1a**. The reaction mixture was further stirred at 80 °C for additional 3 h. Finally, a single isolation procedure using preparative thin-layer chromatography furnished **2a** in 78% yield based on **11**. Interestingly, a good level of asymmetric induction (81% ee) was observed when chiral rhodium(II) complex, Rh₂(S-TCPTTL)₄,²⁷ was employed. The all-in-one-pot procedure shows that the reagents and catalysts requisite in each step hardly interfere with each other.

Furthermore, the all-in-one-pot process could be even directly followed by oxidative aromatization using manganese dioxide to afford 3,4-fused indole 7 in 70% yield based on 11 (eq 5).

In summary, we have developed the intramolecular [3 + 2] annulation of the α -imino rhodium carbene complexes with aryl groups. Of note is that the annulation mode markedly contrasts with the addition mode of α -oxo rhodium carbene complex. It constitutes the key step of a unique method to synthesize 3,4-fused 3a,7a-dihydroindoles from 5-aryl-1-alkynes.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and data. This material is available free of charge via Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

tmiura@sbchem.kyoto-u.ac.jp murakami@sbchem.kyoto-u.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This paper is dedicated to Prof. Teruaki Mukaiyama on the occasion of his 88th birthday (Beiju). We thank Dr. Y. Nagata (Kyoto University) for his kind help in an X-ray analysis. This work was supported by MEXT (Grant-in-Aid for Scientific Research on Innovative Areas nos. 22105005 and 24106718, Young Scientists (A) no. 23685019, Scientific Research (B) no. 23350041) and JST (ACT-C).

REFERENCES

(1) For its selected total syntheses: (a) Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 1028. (b) Stoffman, E. J. L.; Clive, D. L. J. Tetrahedron 2010, 66, 4452.

(2) For its selected total syntheses: (a) Kato, K.; Ono, M.; Akita, H. *Tetrahedron* **2001**, *57*, 10055. (b) Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. **2013**, *15*, 550.

(3) For its selected total syntheses: (a) Baran, P. S.; Maimone, T. J.; Richter, J. M. *Nature* **200**7, 446, 404. (b) Rafferty, R. J.; Williams, R. M. J. Org. Chem. **2012**, 77, 519.

(4) For its selected total syntheses: (a) Allan, K. M.; Kobayashi, K.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 1392. (b) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396. (c) Wood, J. L. Nat. Chem. 2012, 4, 341.
(5) For its selected total syntheses: (a) Ergot Alkaloids and Related Compounds. Handbook of Experimental Pharmacology; Berde, B., Schild, H. O., Eds.; Springer-Verlag: Berlin, 1978; Vol. 49.
(b) Umezaki, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2013, 15, 4230. (c) Liu, Q.; Zhang, Y.-A.; Xu, P.; Jia, Y. J. Org. Chem. 2013, 78, 10885.

(6) For its selected total syntheses: (a) Yokoyama, Y.; Kondo, K.; Mitsuhashi, M.; Murakami, Y. Tetrahedron Lett. 1996, 37, 9309.
(b) Yamada, F.; Makita, Y.; Somei, M. Heterocycles 2007, 72, 599.

(7) For its selected total syntheses: (a) Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 5918.
(b) Zhang, Y.-A.; Iiu, Q.; Wang, C.; Jia, Y. Org. Lett. 2013, 15, 3662.
(8) For syntheses of 3,4-fused indoles: (a) Greshock, T. J.; Funk, R. L. J. Am. Chem. Soc. 2006, 128, 4946. (b) Park, I.-K.; Park, J.; Cho, C.-G. Angew. Chem., Int. Ed. 2012, 51, 2496. (c) Breazzano, S. P.; Poudel, Y. B.; Boger, D. L. J. Am. Chem. Soc. 2013, 135, 1600. (d) Shan, D.;

Journal of the American Chemical Society

Gao, Y.; Jia, Y. Angew. Chem., Int. Ed. 2013, 52, 4902 and references therein.

(9) For recent examples of related dearomatizing reactions: (a) García-Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 6676. (b) Leon, R.; Jawalekar, A.; Redert, T.; Gaunt, M. J. Chem. Sci. 2011, 2, 1487. (c) Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 1268. (d) Zhuo, C.-X.; You, S.-L. Angew. Chem., Int. Ed. 2013, 52, 10056 and references therein.

(10) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (b) Miura, T.; Yamauchi, M.; Murakami, M. Chem. Commun. 2009, 1470. For a pioneering work for generation of rhodium carbene complex from pyridotriazoles via ring-chain tautomerization: (c) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 4757.

(11) For recent reports on the synthetic transformation of triazoles:
(a) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc.
2013, 135, 11712. (b) Miura, T.; Tanaka, T.; Yada, A.; Murakami, M. Chem. Lett. 2013, 42, 1308. (c) Parr, B. T.; Davies, H. M. L. Angew. Chem., Int. Ed. 2013, 52, 10044.

(12) Reviews: (a) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 862. (b) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 1371.

(13) (a) Chattopadhyay, B.; Gevorgyan, V. Org. Lett. 2011, 13, 3746.
(b) Shi, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 5394.

(14) (a) Schultz, E. E.; Sarpong, R. J. Am. Chem. Soc. 2013, 135, 4696. (b) Miura, T.; Hiraga, K.; Biyajima, T.; Nakamuro, T.; Murakami, M. Org. Lett. 2013, 15, 3298.

(15) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52, 1507.
(16) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am. Chem. Soc.
2013, 135, 4652.

(17) Parr, B. T.; Green, S. A.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 4716.

(18) Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6802.

(19) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M. J. Am. Chem. Soc. **2013**, 135, 13652.

(20) For the synthesis of 3a,7a-dihydroindoles via α -imino carbene generated by thermal decomposition of N-cyano-1,2,3-triazole: (a) Danion, D.; Arnold, B.; Regitz, M. Angew. Chem., Int. Ed. Engl. **1981**, 20, 113. For other preparative methods: (b) Acheson, R. M.; Vernon, J. M. J. Chem. Soc. **1962**, 1148. (c) Lee, C. K.; Hahn, C. S.; Noland, W. E. J. Org. Chem. **1978**, 43, 3727. (d) Sheppard, G. S.; Vollhardt, K. P. C. J. Org. Chem. **1986**, 51, 5496. (e) Tanaka, K.; Yukimura, N.; Narasaka, K. Bull. Chem. Soc. Jpn. **2004**, 77, 575.

(21) Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952.

(22) (a) McKervey, M. A.; Tuladhar, S. M.; Twohig, M. F. J. Chem. Soc., Chem. Commun. 1984, 129. (b) Crombie, A. L.; Kane, J. L., Jr.; Shea, K. M.; Danheiser, R. L. J. Org. Chem. 2004, 69, 8652. (c) Panne, P.; Fox, J. M. J. Am. Chem. Soc. 2007, 129, 22. For a review on the Büchner reaction: (d) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; John Wiley & Sons: New York, 1998; pp 289–324.

(23) Danishefsky, S.; Cunningham, R. J. Org. Chem. 1965, 30, 3676.
(24) (a) Uhle, F. C. J. Am. Chem. Soc. 1949, 71, 761. (b) Teranishi,
K.; Hayashi, S.; Nakatsuka, S.; Goto, T. Synthesis 1995, 506.
(c) Padwa, A.; Bur, S. K.; Zhang, H. J. Org. Chem. 2005, 70, 6833.

(25) Oxidation of 8 with sulfur trioxide pyridine complex simply caused alcohol dehydrogenation to give *N*-tosyl-3a,7a-dihydro-Uhle's ketone **15**.

(26) MacKay, J. A.; Bishop, R. L.; Rawal, V. H. Org. Lett. 2005, 7, 3421.

(27) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S. Tetrahedron Lett. **2002**, 43, 9561.