Synthesis of d² Tungsten Arene Complexes and Their **Reaction with Diphenylacetylene**

R. C. Mills, K. A. Abboud, and J. M. Boncella*

Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611-7200

Received May 24, 2000

Summary: The synthesis of the d^2 arene complexes $[W(NPh)(\eta^{6}\text{-}arene)(o-(Me_{3}SiN)_{2}C_{6}H_{4})]$ (arene = $C_{6}H_{5}Et$ (3), C_6H_5Pr (4)) by the room-temperature hydrogenolysis of the dialkyl complexes $[W(NPh)(o-(Me_3SiN)_2C_6H_4)(R)_2]$ $(R = CH_2CH_2Ph'(\mathbf{1}), CH_2CH_2CH_2Ph'(\mathbf{2}))$ is described. The ethylbenzene complex 3 reacts with diphenylacetylene, giving the metallacyclopent-3-ene complex 5.

The chemistry of metal complexes containing sixmembered π -arene ligands has been thoroughly developed since Fischer and Hafner first characterized $Cr(\eta^{6}$ benzene)₂.¹ Stable arene complexes have now been characterized for virtually all of the transition metals.² Although most early examples were limited to compounds containing metals in low oxidation states,³ more recently d⁰ metal arenes have become more common.⁴ Surprisingly, examples of d² arene complexes have been limited to $[Zr(\eta^6-C_6H_5Me)(PMe_3)_2Cl_2]^5$ and $[Ti(\eta^6-C_6H_6)-$ (AlCl₃)₂Cl₂],⁶ formed from the reduction of the appropriate metal halide in the presence of an arene, and [Ta- $(\eta^6-C_6Me_6)(OAr)_2Cl]$,⁷ formed from the metal-mediated cyclotrimerization of 2-butyne. Following earlier work from our group on the reactivity of β -hydrogen-containing W(VI) dialkyl complexes of the type [W(NPh)(o-(Me₃- $SiN_2C_6H_4R_2$] (where $R = CH_2CH_3$, CH_2CMe_3)⁸ with H₂,⁹ we report the synthesis of d² tungsten arene complexes with the general formula $[W(NPh)(\eta^6-arene)-$

(1) (a) Fischer, E. O.; Hafner, W. Z. Naturforsch. 1955, 10B, 665. (b) Marr, G.; Rockett, B. W. In The Chemistry of the Metal-Carbon *Bond*; Hartle, F. R., Patai, S., Eds.; Wiley: New York, 1982. (c) Calderazo, F.; Pampaloni, G. *J. Organomet. Chem.* **1992**, *423*, 307. (d) Jolly, P. W. *Acc. Chem. Res.* **1996**, *26*, 544.

(2) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.

(3) (a) Maslowsky, E. J. J. Chem. Educ. 1992, 70, 980. (b) Green, M. L. H. J. Organomet. Chem. 1980, 200, 119. (c) Yoon, M.; Lin, J.; Young, V. G.; Miller, G. J. J. Organomet. Chem. **1996**, 507, 31. (d) Lockwood, M. A.; Fanwick, P. E.; Eisenstein, O.; Rothwell, I. P. J. Am. Chem. Soc. 1996, 118, 2762. (e) Maseras, F.; Lockwood, M. A.; Eisenstein, O.; Rothwell, I. P. J. Am. Chem. Soc. 1998, 120, 6598. (f) Ashmore, J.; Green, J. C.; Green, M. L. H.; Smith, M. L.; Menhert, C. D.; Wucherer, E. J. *J. Chem. Soc., Dalton Trans.* **1995**, 1873. (g) Menhert, C. D.; Chenega, A. N.; Green, M. L. H. *J. Organomet. Chem.* **1996**, *513*, 247. (h) Lockwood, M. A.; Fanwick, P. E.; Rothwell, I. P. Polyhedron 1995, 14, 3363. (i) Wexler, P. A.; Wigley, D. E.; Koerner, J. B.; Albright, T. A. Organometallics 1991, 10, 2319.

J. B.; Albright, T. A. Organometallics 1991, 10, 2319.
(4) (a) Horton, A. D.; de With, J. Organometallics 1997, 16, 5424.
(b) Thorn, M. G.; Etheridge, Z. C.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1998, 17, 3636. (c) Muso, F.; Solari, E.; Floriani, C.; Schenk, K. Organometallics 1997, 16, 4889. (d) Calderazo, F.; Ferri, I.; Pampaloni, G.; Troyanov, S. J. Organomet. Chem. 1996, 518, 187.
(e) Lancaster, S. J.; Robinson, G. B.; Bochman, M.; Coles, S. J.; Hursthouse, M. B. Organometallics 1995, 14, 2456. (f) Pellechia, C.; Grassi, A.; Immirzi, A. J. Am. Chem. Soc. 1993, 115, 1160. Grassi, A.; Immirzi, A. *J. Am. Chem. Soc.* **1933**, *115*, 1160. (5) Diamond, G. M.; Green, M. L. H.; Walker, N. M.; Howard, J. A.

K.; Mason, S. A. J. Chem. Soc., Dalton Trans. 1992, 2641.
 (6) Troyanov, S. J. Organomet. Chem. 1994, 475, 139.

(7) Bruck, M. A.; Copenhaver, A. S.; Wigley, D. E. J. Am. Chem. Soc. **1987**, 109, 6525.

Scheme 1

 $(o-(Me_3SiN)_2C_6H_4)$] (arene = CH₃CH₂C₆H₅, CH₃CH₂- $CH_2C_6H_5$) and their reaction with diphenylacetylene.

Room-temperature hydrogenolysis (34 psi, H₂) of a toluene solution of [W(NPh)(o-(Me₃SiN)₂C₆H₄)(CH₂- $CH_2C_6H_5_2$] (1) or $[W(NPh)(o-(Me_3SiN)_2C_6H_4)(CH_2CH_2 CH_2C_6H_5)_2$ (2) (Scheme 1) results in a slow color change from orange to dark purple over several days. From this solution, the d² arene complexes $[W(NPh)(\eta^6-ethylben$ zene)(o-(Me₃SiN)₂C₆H₄)] (**3**) and [W(NPh)(η^6 -propylben $zene)(o-(Me_3SiN)_2C_6H_4)]$ (4) (Scheme 1) can be isolated as dark purple solids. Compounds 3 and 4 are indefi-

^{(8) (}a) Wang, S. Y. S.; Abboud, K. A.; Boncella, J. M. J. Am. Chem. Soc. 1997, 119, 11990. (b) Vanderlende, D. D.; Wang, S. Y. S.; Boncella, J. M. J. Organomet. Chem. 1997, 530, 59.
 (9) Boncella, J. M.; Vanderlende, D. D.; Wang, S. Y. S. J. Organomet.

Chem. 1999, 591, 8.

Figure 1. Molecular structure of W(NPh)(η^4 -propylbenzene)(o-(Me₃SiN)₂C₆H₄) (**4**), showing 40% thermal ellipsoids and the atom-labeling scheme. The silylmethyl hydrogen atoms have been removed for clarity. Selected bond distances (Å): W–N(1), 1.762(4); W–N(2), 2.057(4); W–N(3), 2.056(4); W–C(1), 2.533(5); W–C(2), 2.503(5); W–C(3), 2.251(5); W–C(4), 2.363(5); W–C(5), 2.382(5); W–C(6), 2.267(5); C(1)–C(2), 1.371(6); C(2)–C(3), 1.459(7); C(3)– C(4), 1.416(7); C(4)–C(5), 1.372(7); C(5)–C(6), 1.434(7); C(6)–C(1), 1.459(7). Selected bond angles (deg): W–N(1)– C(7), 155.2(6); N(1)–W–N(2), 102.50(16), N(1)–W–N(3), 103.44(16); N(3)–W–N(2), 77.66(14).

Me₃Si

Me₃Si

5

 H_2

Ph

Scheme 2

Single crystals of **4** suitable for an X-ray diffraction study were obtained through slow evaporation of a concentrated C₆D₆ solution of **4**.¹¹ The crystal structure of **4** shows that the arene ring is coordinated in an η^4 fashion. The W–C distances of four of the ring carbons, 3 (2.251 Å), 4 (2.363 Å), 5 (2.382 Å), and 6 (2.267 Å),

Figure 2. Molecular structure of the W metallacyclopent-3-ene complex **5**, showing 40% thermal ellipsoids and the atom-labeling scheme. All hydrogen atoms have been removed for clarity, except those of the metallacycle. Selected bond distances (Å): W-N(1), 1.745(3); W-N(2), 2.034(3); W-N(3), 2.037(3); W-C(1), 2.162(4); W-C(2), 2.589(4); W-C(3), 2.582(3); W-C(4), 2.204(4); C(1)-C(2), 1.497(5); C(2)-C(3), 1.364(5); C(3)-C(4), 1.495(5). Selected bond angles (deg): W-N(1)-C(24), 176.2(3); C(1)-W-C(4), 76.97(15); N(2)-W-N(3), 79.43(12).

are significantly shorter than those for ring carbons 1 (2.533 Å) and 2 (2.503 Å) (Figure 1). As a result, a considerable distortion from planarity of the coordinated arene ring is observed (the angle between the planes formed by C2-C1-C6-C5 and C2-C3-C4-C5 is 20.4°). Furthermore, the short ring C–C distances for C4–C5 (1.372 Å) and C1-C2 (1.371 Å), consistent with C-C double bonds, coupled with the fold of the arene ring indicate that there is a significant disruption of aromaticity upon coordination. Overall, the interaction of the arene ring with the tungsten center in **4** is similar to the $(\sigma_2 \pi)$ bonding extreme of a 1,3-butadiene-metal interaction.¹² Despite the inherent stability of the coordinated arene ring in 3 and 4, compound 3 was found to undergo a unique coupling reaction with diphenylacetylene.

Thermolysis (60 °C) for 12 h of a toluene solution containing equimolar amounts of **3** and PhC≡CPh afforded the W(VI) metallacyclopent-3-ene species [o- $(Me_3SiN)_2C_6H_4)(NPh)WCH_2C(Ph)=C(Ph)CHPh]$ (5) in 54% yield (Scheme 2). The ¹H NMR of 5 displays two doublet resonances (2.58 and 2.81 ppm, $^{2}J = 10.8$ Hz) and a singlet resonance (4.77 ppm, ${}^{2}J(W-H) = 4.8$ Hz), for the α -CH₂ and α -CH protons of the metallacycle, respectively. In the ${}^{13}C{}^{1}H$ NMR spectrum the two carbons bonded to the metal center resonate at δ 57.74 ppm as a triplet with ${}^{1}J({}^{13}C-{}^{1}H) = 143.0$ Hz and 73.72 ppm as a doublet with ${}^{1}J({}^{13}C-{}^{1}H) = 137.36 \text{ Hz}.{}^{13} \text{ An}$ X-ray diffraction study of a single crystal of 5 grown by slow evaporation of a pentane solution of 5 (Figure 2) confirmed the metallacyclopent-3-ene structure which was deduced from the spectroscopic data.¹⁴

⁽¹¹⁾ Crystal data for 4: C₂₇H₃₉N₃Si₂W, M_r = 645.64, monoclinic, $P2_1/n$, dark red-purple, a = 12.1874(5) Å, b = 15.6037(7) Å, c = 14.5968(6) Å, $\alpha = 90^\circ$, $\beta = 94.317(1)^\circ$, $\gamma = 90^\circ$, 173(2) K, Z = 4, R = 0.0371 with GOF = 0.961 on F^2 .

⁽¹²⁾ Maslowsky, E. J. Chem. Educ. 1992, 70, 980.

It has been shown that early-transition-metal complexes facilitate the metal-mediated [2 + 2] cycloaddition of alkynes and olefins to generate metallacyclopentenes.¹⁵ The formation of **5** appears to proceed by initial C–H bond activation of the coordinated ethylbenzene in **3**, followed by reductive elimination of H₂ (Scheme 3). The intermediate η^2 -styrene complex then undergoes the expected cycloaddition with PhC=CPh

(15) (a) Erker, G.; Kropp, K. J. Am. Chem. Soc. 1979, 101, 3659. (b)
Erker, G.; Dorf, U.; Rheingold, A. L. Organometallics 1988, 7, 138. (c)
Takahasi, T.; Xi, Z.; Rousset, C. J.; Suzuki, N. Chem. Lett. 1993, 1001.
(d) Mansel, S.; Thomas, D.; Lefeber, C.; Heller, D.; Kempe, R.;
Baumann, W.; Rosenthal, U. Organometallics 1997, 16, 2886.

followed by rearrangement¹⁶ to generate **5**. Support for the proposed formation of the η^2 -styrene intermediate through loss of H₂ comes from reactions of the mixeddialkyl tungsten complex [W(NPh)(*o*-(Me₃SiN)₂C₆H₆)-(CH₂CH₂C₆H₅)(Me)] with PhC=CPh, in which **5** is formed in high yield.¹⁷

We are currently investigating the scope of this type of chemistry with several different mixed-dialkyl systems and a variety of unsaturated substrates. Our interest in the initial coupling of coordinated ethylbenzene with PhC=CPh focuses on the observed loss of H₂. Further studies into the mechanism for this process and the possible generality of the dehydrogenation of the arene side chain are currently in progress.

Acknowledgment. We wish to acknowledge the National Science Foundation (Grant No. CHE-9523279) for the support of this work. K.A.A. wishes to acknowledge the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

Supporting Information Available: Figures giving 300 MHz ¹H NMR spectra of **2**–**5** and tables of crystal data, structure solution and refinement, atomic coordinates, bond lengths and angles, and anisotropic thermal parameters for **4** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0004390

(16) Reaction of an analogous Mo styrene complex with PhC=CPh at room temperature initially (after 2 h) yields a metallacyclopent-2ene. Over a period of 2 days this product is slowly converted to a metallacyclopent-3-ene analogous to 5, suggesting the final step in the formation of 5 is rearrangement of the metallacyclopent-2-ene.

(17) Thermolysis (70 °C) of a toluene solution of the mixed-dialkyl complex [W(NPh)(o-(Me₃SiN)₂C₆H₆)(CH₂CH₂C₆H₅)(Me)] yields an η^2 -styrene complex with the liberation of CH₄. In agreement with the proposed mechanism for the formation of **5**, thermolysis of [W(NPh)-(o-(Me₃SiN)₂C₆H₆)(CH₂CH₂C₆H₅)(Me)] in the presence of 1 equiv of PhC=CPh produces **5** in good yield.

⁽¹³⁾ The ¹J(¹³C-¹H) coupling constants measured for the α -carbons of **5** (143 and 137 Hz) are similar to those for strongly $\sigma_2\pi$ -bound group 4 and 5 butadiene complexes (138–150 Hz):^{13a-c} (a) Yasuda, H.; Tatsumi, K.; Nakamura, A. *Acc. Chem. Res.* **1985**, *18*, 120. (b) Kruger, C.; Muller, G.; Erker, G.; Dorf, U.; Engel, K. *Organometallics* **1985**, *4*, 215. (c) Yasuda, H.; Tatsumi, K.; Okamoto, T.; Mashima, K.; Lee, K.; Nakamura, A.; Kai, Y.; Kanehisa, N.; Kasai, N. *J. Am. Chem. Soc.* **1985**, *107*, 2410.

⁽¹⁴⁾ Crystal data for **5**: C₄₀H₄₆N₃Si₂W, M_r = 808.83, monoclinic, $P2_1/n$, dark red-brown, a = 18.4684(8) Å, b = 20.4038(9) Å, c = 20.9892(9) Å, $\alpha = 90^{\circ}$, $\beta = 109.780(1)^{\circ}$, $\gamma = 90^{\circ}$, 173(2) K, Z = 8, R = 0.0328 with GOF = 1.072 on F^2 .