JOURNAL OF THE CHEMICAL SOCIETY

Chemical Communications

Number 10 1983

Oxygen Atom Transfer in the Oxidation of Triphenylphosphine by μ -Oxo-bis[phthalocyaninatoiron(III)]

Claudio Ercolani,* Marcello Gardini, Giovanna Pennesi, and Gentilina Rossi

Istituto di Teoria e Struttura Elettronica, CNR, via Salaria, Km 29.5, 00016 Monterotondo Stazione (Roma), Italy

It has been shown that μ -oxo-bis[phthalocyaninatoiron(III)] can oxidize triphenylphosphine to triphenylphosphine oxide in the presence of pyridine under mild conditions, resulting in the formation of the corresponding Fe^{II}-bis adduct; this reaction is a rare example of O atom transfer by a μ -oxo Fe^{III} oligomer.

Recently¹ we have described a solid, air stable, crystalline modification of a μ -oxo species of formula [PcFe]₂O (1) (Pc = phthalocyaninato dianion), reproducibly obtained by the interaction of FePc suspended in dimethylformamide, dimethylacetamide, tetrahydrofuran, or dioxane with molecular oxygen. Characterization of this crystalline modification, (1), to be distinguished from a different crystalline modification of [PcFe]₂O which has been fully characterized,² was based on gas-volumetric measurements, i.r. spectra (characteristic bands at 852 and 824 cm⁻¹, ν_{as} . Fe–O–Fe), and its magnetic behaviour.

[PcFe]₂O

On prolonged contact with pyridine (py) (liquid or vapour) in air at room temperature, (1) is transformed to $PcFe(py)_2$, with the release of an O atom. This reaction is unusual since the reverse process, equation (1), is normally observed, under

$$2PFeL_2 \xrightarrow{O_2} PFe-O-FeP$$
(1)
P = porphyrin, L = N-base.

the same experimental conditions, for porphyrin complexes, and iron(II) complexes with related donor ligands such as Schiff bases, ethylenediaminetetra-acetic acid, and other N₄macrocycles.³ Interest in oxo complexes (M=O) of transition metals is expanding owing to their use as oxygen transfer agents in the selective oxidation of organic substrates⁴ and as postulated intermediates in biological processes.^{4D,5} We have therefore undertaken a more detailed investigation of the behaviour of (1) in pyridine and have examined the possibility of the oxidation of PPh₃ to OPPh₃ by this complex. Experiments carried out at room temperature and pressure in a gas-volumetric apparatus using a suspension of (1) (3 g) in pure pyridine (25 cm³) gave no evidence of significant dioxygen evolution (volume variations less than 5% of the expected value, *ca.* 30 cm³). Thus, the conversion of the μ -oxo species into [PcFe(py)₂] does not follow equation (2). This result was given further support by an experiment carried out with a sample of (1) isotopically enriched with ¹⁸O. [¹⁸O](1)

$$2[PcFe]_2O \xrightarrow{py} 4[PcFe(py)_2] + O_2$$
 (2)

was prepared in dimethylformamide by the interaction of FePc with O₂, 99% enriched in ¹⁸O.¹ The complete disappearance of the bands at 852 and 824 cm⁻¹ (ν_{as} , Fe⁻¹⁶O-Fe) in the i.r. spectrum and the appearance of one strong absorption at 806 cm^{-1} (vas. Fe-¹⁸O-Fe) ensured that the enrichment of ¹⁸O in (1) was at least 90%.1,2 [18O](1) and liquid pyridine were placed in a closed apparatus in the presence of air for 48 h to ensure the complete transformation of the μ -oxo species into the bis-adduct. The pyridine vapour was condensed in a cold finger and mass spectral analysis showed the absence of detectable amounts of ¹⁸O₂, thus definitely excluding the possibility that release of the O atom by (1) leads to the formation of molecular oxygen, as in equation (2). Visible spectral measurements in pyridine at 30 °C show that the conversion of the μ -oxo species into the bis-pyridine adduct occurs quantitatively {time required 24 h; initial concentration of (1): 0.98 imes 10^{-4} M; expected [PcFe(py)₂] (ϵ 1.30 × 10⁵)⁶: 1.96 × 10⁻⁴ M; found: 1.95×10^{-4} M}. These data indicate that the Fe^{III} \rightarrow Fe^{II} reduction process does not result in the oxidation of the phthalocyanine chromophore, i.e. O atom transfer does not take place internally to the phthalocyanine molecule. Instead, donation occurs to an external substrate, *i.e.* pyridine or any reactive impurity present in this solvent. The difficulties 550

encountered in the identification of the oxidized species in this medium (probably a mixture of different products) led us to use PPh_3 as an oxidizable substrate, as it gives a unique oxidation product, $OPPh_3$, which is easily detectable by i.r. spectra.^{4a,b}

When (1), suspended under N₂, at room temperature, in a solution of PPh₃ (molar ratio 1:1) in toluene and pyridine (a large excess of the latter with respect to the amount calculated for the formation of the bis-adduct) is stirred for 48 h, the reaction shown in equation (3) takes place. At the end of the reaction the bis-pyridine adduct was separated easily by filtration and identified by its i.r. and X-ray powder spectra. The toluene solution was evaporated to dryness and the i.r. spectra (Nujol mull) of the solid residue examined in the region 850—650 cm⁻¹, where OPPh₃ has a characteristic band at 720 cm⁻¹.⁷ The amounts of OPPh₃ and residual PPh₃ were estimated by measuring the relative peak height of the 720 and 695 cm⁻¹ bands and comparing this with that observed for the same bands in reference spectra obtained from known mixtures of OPPh₃ and PPh₃ (error ± 5 —10%). Evaluation of the

$$[PcFe]_{2}O + PPh_{3} \xrightarrow{py} 2[PcFe(py)_{2}] + OPPh_{3} \qquad (3)$$

i.r. spectral data of several experiments carried out under identical reaction conditions indicated that reaction (3) goes to completion. Parallel blank experiments showed that partial oxidation of PPh₃ does occur, even in the absence of (1); however, the amount of the $OPPh_3$ formed does not exceed the estimated error in the i.r. spectral determinations. On changing the molar ratio of (1): PPh₃ to 1: 2 it was observed that only ca. 50% of the phosphine was converted into the corresponding oxide. These data clearly indicate that the reaction involves the donation of the oxygen atom from (1) to PPh₃. Further support for this was obtained by allowing $[^{18}O](1)$ to react with PPh₃ (1:1 molar ratio). The i.r. spectra of the oxidized phosphine indicated the presence of both ¹⁸OPPh₃ [v(P-¹⁸O) 1164 cm⁻¹] and ¹⁶OPPh₃ [v(P-¹⁶O) 1194 cm⁻¹] with the former predominating. Examination of the mixture by mass spectra gave 75% of ¹⁸OPPh₃ and 25% of ¹⁶OPPh₃. The amount of ¹⁸OPPh₃ can be increased to 85-90% if the small percentage of PPh3 oxidized to ¹⁶OPPh3 in a parallel blank experiment is taken into account. These data are highly satisfactory when considering that ¹⁸O transfer takes place

from ${}^{18}O_2$ to ${}^{18}OPPh_3$, with the intermediate formation of $[{}^{18}O](1)$, via two distinct reactions.

From the above results it can be conclusively established that the single O atom of (1) is stoicheiometrically transferred to PPh₃. To our knowledge, this is the first example of such a reaction for a μ -oxo Fe¹¹¹ oligomer. Since (1) is formed by O₂ uptake, even from the air, at room temperature and pressure,^{1,2} it can be concluded that mild conditions are required for the overall process [equation (4)].

$$2\text{FePc} \xrightarrow{O_2} (1) \xrightarrow{\text{py}} 2[\text{PcFe}(\text{py})_2] + \text{OPPh}_3 \qquad (4)$$

We are currently investigating the kinetics and mechanism of this process in order to establish whether O atom transfer is direct or, an unstable intermediate, similar to the 'oxenic' form postulated for the reaction of FePc with O_2 in dimethyl sulphoxide,⁸ is the true active agent in this process.

This work was partly financed by the CNR project 'Chimica fine e secondaria'. We are indebted to the Mass Spectra Service in our Area della Ricerca (Montelibretti).

Received, 9th December 1982; Com. 1423

References

- 1 C. Ercolani, G. Rossi, and F. Monacelli, Inorg. Chim. Acta, 1980, 44, L215.
- 2 C. Ercolani, F. Monacelli, G. Pennesi, and G. Rossi, *Inorg. Chem.*, accepted for publication.
- B. R. James, 'The Porphyrins,' vol. V, Physical Chemistry, Part C, ed. D. Dolphin, Academic Press, 1978, p. 231.
 (a) B. A. Moyer, B. K. Sipe, and T. J. Meyer, *Inorg. Chem.*
- 4 (a) B. A. Moyer, B. K. Sipe, and T. J. Meyer, *Inorg. Chem.*, 1981, 20, 1475, and references therein; (b) Der-hang Chin, G. N. La Mar, and A. L. Balch, *J. Am. Chem. Soc.*, 1980, 102, 5947, and references therein.
- 5 C. K. Chang and Ming-Shang Kuo, J. Am. Chem. Soc., 1979, 101, 3413, and references therein; J. T. Groves, T. E. Nemo, and R. S. Myers, J. Am. Chem. Soc., 1979, 101, 1032, and references therein.
- 6 W. Dale, Trans. Faraday Soc., 1969, 65, 331.
- 7 B. S. Tovrog, S. E. Diamond, and F. Mares, J. Am. Chem. Soc., 1981, 103, 270.
- 8 C. Ercolani, F. Monacelli, G. Rossi, and M. Verzino, *Inorg. Chim. Acta*, in the press.