THE SYNTHESIS AND CHEMICAL BEHAVIOUR OF CF₃S-SUBSTITUTED β -DICARBONYL COMPOUNDS

Anna Kolasa

Department of Organic Chemistry, Jagiellonian University, 30-060 Cracow (Poland)

Ketones, diketones and acetoacetic ethyl ester are known to react with trifluoromethylsulphenyl chloride to give α -SCF₃ substituted products [1]. The reaction with CF₃SCl was extended to benzoylacetic ethyl ester, anilides of acetoacetic and benzoylacetic acids, and their Schiff bases, leading to α -SCF₃ substituted B-dicarbonyl compounds or their nitrogen analogues Additionally, the reaction of CF₃SSCF₃ with C₆H₅COCH₂COOC₂H₅ was investigated and the optimum conditions found to prepare α -(trifluoromethylthio)benzoylacetic ethyl ester in this way.

Ethyl esters of α -(trifluoromethylthio)acetoacetic and α -(trifluoromethylthio)benzoylacetic acids heated in a dimethylsulphoxide/water solution gave known trifluoromethylthioacetone and ω -(trifluoromethylthio)acetophenone respectively, while the splitting of these esters in a potassium hydroxide methanolic solution provided trifluoromethylthioacetic acid in a good yield, so this reaction could be treated as a new method for synthesis of CF₃SCH₂COOH. Anilides of α -(trifluoromethylthio)acetoacetic and α -(trifluoromethylthio)benzoylacetic acids , and their Schiff bases were cyclized in acidic media to obtain 3-SCF₃ substituted derivatives of quinolones-2 and -4.

The structure of compounds synthesized was confirmed by elemental analyses, IR, MS, 1 H and 19 F NMR spectra.

1 H. Bayreuther, A. Haas, Chem. Ber. 106, 1418 (1973).