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ABSTRACT: A concise synthesis of spiro-cyclopropane compounds
from indole derivatives and sulfur ylides has been developed via a
dearomatization strategy. Moreover, the spiro-cyclopropane com-
pounds could be conveniently transformed to rearomatized indole

derivatives in the presence of acids.
D earomatization reactions are important transformations of
aromatic compounds because they directly lead to a
variety of ring systems." Additionally, they are highly efficient
for constructing quaternary carbon centers” and used as the key
steps in the total synthesis of many natural products.® In this
regard, dearomatization reactions of indoles,* pyridines,5
phenols,6 pyrroles,7 etc, have been developed. Among them,
compounds with an indole skeleton have attracted enormous
attention because of the important biological activities of their
derivatives.® Dearomatization reaction of indoles has been
extensively studied over the past decades, with particular
focuses on alkylative dearomatization” and oxidative dearoma-
tization.'® In addition, the Diels—Alder pathway with various
dienophiles'' and organocatalyzed Michael/Mannich cycliza-
tion cascade reactions were also demonstrated in dearomatiza-
tion reactions of indoles."> Besides, several transition-metal-
catalyzed dearomatization reactions of indoles were also
documented."® Although great progress has been made in the
dearomatization reaction of indoles, most of the methods
required harsh conditions and designed catalysts that are
currently commercially unavailable. Thus, to develop a facile
and eflicient method for a dearomatization reaction of indole
derivatives from readily available starting materials would be of
considerable significance in organic chemistry.
Spiro-cyclopropane structure motifs are ubiquitous and
prevalent in various anticancer agents and pharmaceuticals.'*
In addition, they also serve as valuable synthetic intermediates
for a wide range of organic compounds.'® Therefore, the
construction of spiro-cyclopropane skeletons has achieved
extensive attention, and a plethora of efficient methods have
been developed for the synthesis of these important structures,
including from alkenes by Simmons—Smith and related
reactions or with ylides, transition-metal-catalyzed carbene
transfer, Michael-initiated ring closure (MIRC), and organo-
catalytic cyclopropanation, which have been described in the
literature.'®"”
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The use of an arylsulfonyl group as an auxiliary group is still a
prominent synthetic strategy in organic synthesis.'® Recently,
the utilization of the arylsulfonyl group in connection with
indole has attracted intriguing interests. The sulfonyl moiety at
the benzylic position of 3-substituted indoles acts as a good
leaving group, which enables the generation of vinylogous
imines intermediates under basic conditions. The generating
vinylogous imines intermediates are equal to a,f-unsaturated
imines, which are able to react with numerous nucleophiles.'®
Considering that sulfur ylides act as a nucleophile under the
basic condition,”® the vinylogous imine intermediates can be
generated from arenesulfonylindole under the mild basic
conditions. We envisioned that ylides could react with the
vinylogous imine intermediates to furnish the spiro-cyclo-
propane compounds (Scheme 1). Herein, we report an efficient

Scheme 1. Synthesis of Spiro-Cyclopropane Compounds via
the Dearomatization of Indoles
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dearomatization reaction of indole derivatives in which
arylsulfonyl group acts as a leaving group with sulfonium salts
under mild conditions to synthesize spiro-cyclopropane
compounds.

Initially, our investigation was launched with 2-methyl-
substituted arenesulfonylindole 1a (1.0 equiv), sulfonium salt
2a (1.5 equiv), K,CO; (3.0 equiv) as the base in CH,Cl,
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(Table 1). Delightfully, the spiro-cyclopropane products 3a and
3a’ were obtained with 71% vyield and a ratio of 3:1. Next, a

Table 1. Optimization for the Reaction of 2-
Methylarenesulfonylindole 1a with Sulfonium Salt 2a“

Ph, - Et0,C, EtO,C,
s
\g/ base

N—me ol solvent @\ ©\

N Br “CO,Et

H

1a 2a
entry solvent base yield (%) dr®

1 CH,CI, K,CO, 74 3:1
2 toluene K,CO, <5 -
3 CH,0H K,CO4 26 4:1
4 EtOH (E) K,CO, 87 6:1
5 iPrOH (P) K,CO, 35 19:1
6 E/P (1:1) K,CO, 83 7:1
7 E/P (1:5) K,CO, 84 8:1
8 E/P (1:10) K,CO, 83 13:1
9 E/P (1:10) Cs,CO,4 66 6:1
10 E/P (1:10) DIPEA 75 7:1
11 E/P (1:10) Na,CO,4 61 15:1
12 E/P (1:10) KO'Bu <5 -

“Condition: 0.25 mmol 1a, 0.375 mmol 2a, 0.75 mmol base, 3.3 mL of
solvent, room temperature, 12 h. “Isolated yields of the mixture of 3a
and 3a’. “All of the dr (3a/3a’) were determined by 'H NMR
spectroscopy. E/P: EtOH/iPrOH.

series of solvents were examined, and to our delight, high yield
was obtained from EtOH (87%, Table 1, entry 4), and iPrOH
gave the excellent 19:1 of diastereoselectivity (Table 1, entry S).
Thus, the next screening was focused on the mixed solvents.
When the ratio of iPrOH/EtOH was 10:1, the yield could be
retained, and the diastereoselectivity could be raised up to 13:1
(Table 1, entry 8); several other bases were also examined, and
moderate yields and diastereoselectivities were obtained (Table
1, entries 9—11). So, the optimal conditions were established,
K,CO; as the base and iPrOH/EtOH (10:1) as the solvent.
With the optimized conditions in hand, we explored the
reaction scope using a variety of 2-substituted arenesulfony-
lindoles 1 and sulfonium salts 2 as listed in Table 2. A range of
sulfonium salts were examined, and medium to good yields and
excellent diastereoselectivitives were achieved (55—78% yields,
dr = 13:1 to >20:1, Table 2, entries 2—S5). Especially, when R
was aryl carbonyl, up to >20:1 diastereoselectivity were
obtained. The steric and electronic property of the aryl
substituents had little effect on the yield and diastereoselectivity
for substituents R? (Table 2, entries 7—13); all of them could
get satisfactory yields and diastereoselectivity. The electronic
nature of the indole core had little influence on the outcome of
the reactions; when the sulfonylindoles with fluorine or methyl
as substituent at the S-position of the indole ring, both gave
excellent yields and satisfactory diastereoselectivities (Table 2,
entries 14—15). It is worthy of note that when the 2-position of
the indole ring was phenyl, the diastereoselectivity was reversed
(Table 2, entry 16), which may ascribe to the change of
geometry of C=C bond and relative stability of vinylogous
imine intermediate due to steric hindrance of phenyl group. To
our delight, the 2-position unsubstituted sulfonyl indoles were
also suitable reaction partners using ethanol as solvent and
provided the desired products in good ylelds and excellent
diastereoselectivities (Table 2, entries 17—20).>"
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Table 2. Scope for the Reaction of Arenesulfonylindoles 1
with Sulfonium Salts 2%

RZ
Ts
R3 N2 KZCOS
N_gt + S
B° k lPrOH/EtOH
N (10
1 2
2a,R=CO,Et  2d, R =CO(4-MeCgH,)
2b, R=CONEt, 2e, R=CO(4-MeOCgH,4)
2¢, R = COCgHs
entry R!/R*/R3 2 3, yield” (%) dr€
1 Me/Ph/H 2a 3a, 83 13:1
2 Me/Ph/H 2b 3b, 78 13:1
3 Me/Ph/H 2 3¢, 60 >20:1
4 Me/Ph/H 2d 3d, 55 >20:1
5 Me/Ph/H 2e 3e, 71 >20:1
6 Me/n-Pentyl/H 2a 3f, 56 >20:1
7 Me/4-MeC4H,/H 2a 3g, 88 14:1
8 Me/3-MeC,H,/H 2a 3h, 86 13:1
9 Me/2-MeCH,/H 2a 3i, 84 13:1
10 Me/4-CIC(H,/H 2a 3j, 82 14:1
11 Me/3-CIC(H,/H 2a 3k, 75 12:1
12 Me/4-BrC¢H,/H 2a 31, 81 15:1
13 Me/3-MeOCH,/H 2a 3m, 69 11:1
14 Me/Ph/5-Me 2a 3n, 88 12:1
15 Me/Ph/S-F 2a 30, 83 10:1
16 Ph/4-BrC¢H,/H 2a 3p, 70 LS
174 H/Ph/H 2a 3q, 82 >20:1
184 H/4-CIC(H,/H 2a 3r, 81 >20:1
194 H/4-BrC¢H,/H 2a 3s, 83 >20:1
207 H/n-Pentyl/H 2a 3t, 85 >20:1

“Condition: 0.25 mmol 1, 0.375 mmol 2, 0.7S mmol K;_CO3, 3.0 mL
of iPrOH, 0.3 mL of EtOH, room temperature, 12 h. YIsolated yields
of the mixture of 3 and 3' “All of the dr (3/3’) were determined by
"H NMR spectroscopy. 933 mL of EtOH was used.

The structure and stereochemistry of spiro-cyclopropanes 3a
(Figure 1), 3p, and 3p’ were verified by the combination of

Figure 1. X-ray crystal structure of compound 3a.

NMR, HRMS spectroscopy, and single-crystal X-ray diffraction
anaysis (for X-ray crystal structure of 3p and 3p’, see the
Supporting Information).*”

Furthermore, a preliminary study on the enantioselective
version of this dearomatization reactlon was also tried. Using
the known chiral sulfonium salts> originally developed by
Aggarwal, only moderate enantioselectivity 64% ee and low
yield (29%) were obtained (Scheme 2). These promising
results demonstrated the potential for synthesis of the chiral
spiro-cycopropane derivatives, although more efficient catalytic
systems need to be developed.

It is noted that the model substrates 1a and 2a could also be
carried out at a gram scale. As illustrated in Scheme 3, the target
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Scheme 2. Synthesis of Chiral Spiro-Cyclopropane with the
Chiral Sulfonium Salt
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products 3a and 3a’ could be obtained in 82% yield and the
diastereoselectivity could be kept with 13:1.

Scheme 3. Scale-up of Model Substrates

Ph 1o EtO,C, EtO,C,
@ K,CO3 Ph «Ph
N + S - - e + e
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N COEt  (10:1) N N
H 82%
1a (1.877 g) 2a 3a 3a'

3a/3a'=13:1 (1.527 g)

In order to explore the application of our methodology, we
tried to transform them to rearomatized 2,3-disubstituted
indole derivatives (Scheme 4). Pleasingly, when trifluoroacetic

Scheme 4. Selective Transformations of 3a to Rearomatized
Indole Derivatives

OCOCF, OH
Ph™N..cOOEL PN .\cOOEL
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H 89% H
4a 4b (Confirmed by X-Ray)

acid was added, the expected rearomatized product 4a was
obtained in 65% vyield with excellent diastereoselectivity;
trifluoroacetic acid served as both acid and nucleophile in this
reaction. When water was chosen as nucleophile, the product
hydroxyl ester 4b could also be obtained with 89% yield with
excellent diastereoselectivity. The single-crystal of 4b** was
successfully obtained and confirmed the relative configuration
(see the Supporting Information).

In conclusion, we have developed a concise and efficient
dearomatization method for the rapid and facile synthesis of
spiro-cyclopropane compounds via the vinylogous imine
intermediates generated from readily available arenesulfony-
lindoles and sulfonium salts under mild basic conditions. This
methodology provides a succinct access to substituted spiro-
cyclopropane derivatives. Moreover, the spiro-cyclopropanes
could be conveniently transformed to rearomatized indole
derivatives with excellent yields in the presence of acids. Our
ongoing studies are focused on an asymmetric version of this
reaction.
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