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Abstract: A short access to (+)-ptiloeaulin involving a photoreducdve cyclopropane ring 
opening of an optically active bicyclo[4.1.0lheptanon¢ derivative is described. 
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(+)-Ptilocaulin [(+)-1] was isolated as a nitrate salt from the orange Caribbean sponge Ptilocaulis aft. 

P. spiculifer in 1981 t. This natural product displays antimicrobial activity against Gram-positive and 

Gram-negative bacteria and significant cytotoxicity towards L 1210 leukemia cells 1. 
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The first total synthesis of racemic (+)-ptilocaulin based on the addition of guanidine was described in 

1983 2. A second synthesis involving the formation of  the six-membered ring by intramolecular 

[3+2] cycloaddition of a nitrile oxide 3 and a third one relying upon a photochemical 1,3-acyl migration of 

1-butyl-exo-8-methyl[3.2.2]non-6-en-2-one 4 were reported subsequently. The total asymmetric synthesis of 

(-)-ptilocaulin 5, 6 and of (+)-ptilocaulin 7 have also been reported. They established unambigously the 

absolute configuration of natural (+)-ptilocaulin. 

Recendy, we have shown that the photoreduction of alkyl substituted bicyclo[4.1.0]heptanones 8, 9 with 

triethylamine leads to the corresponding 3-methylcycloalkanones via intermediates A and B according to the 

following Scheme. 
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We have now applied this reaction to the synthesis of (+)-ptilocaulin. Our immediate target was the 

bicyclic enone (+)-6 that was planned to be derived from cyclohexenone I as suggested in Scheme I. 
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S c h e m e  I: Retrosynthetic analysis of (+)-ptilocaulin 
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Five steps were required for the elaboration of the bicyclo[4.1.0]heptanone (+)-6 from 

cyclohexenone 1 (Scheme II). Epoxidation of 1 (t-BuOOH, KF, A1203) 10 afforded 2 (80 %). The 

addition of n-BuLl (2 eq) to the lithium enolate of 2 (LDA, - 78°C) provided, after acidic work-up 

(TsOH), the product of SN 2 addition l I and water elimination 3 in 80 % yield. Treatment of enone 3 

with the (R,R)-1,2-diphenylethane-1,2-diol 12 under acidic conditions (PPTS, C6H 6, heat) afforded the 

optically pure acetal 4 (yield = 83%; [or] D = + 82,  c --- 1.6, CHC13) which was transformed into the 

bicyclo[4.1.0]heptanone derivative 5 (95% yield; [ot] D = + 24, c = 2.4, CHC13) through a 

Simmons-Smith cyclopropanation using CH2I 2 and ZnEt 212 (_ 78oC, CH2C12). The diastereoisomeric 

excess was 92% as determined by IH NMR 13. Hydrolysis of acetal 5 (HC1 2.7 N in MeOH, 25°C) 

provided the desired bicyclo[4.1.0}heptanone (+)-6 isolated in 68 % yield ([c~] D = + 26, c = 2, CHCI 3, 

ee = 92% 13). Irradiation of ketone (+)-6 in acetonitrile (5 x 10 -2 M) at 254 nm (quartz vessel) in the 

presence of triethylamine (I0 eq) and LiCIO 4 (5 eq) 9 led to the desired ketone (+)-7 (70% yield, 

[o~] D = + 13, c = 2.6, CHCI3, ee = 92% 13). Its 1H NMR spectrum revealed the presence of two 

~-epimers in a 3:1 ratio. The epimerization of (+)-7 was apparently unavoidable. This mixture of 

isomers was converted into enone 8 by bromination of its kinetic silyl-enol ether (LDA, TMSC1, -78 °C) 

followed by debromhydration under basic conditions (Li2CO 3, LiBr) 14. Enone 8 was isolated as a 

65:35 mixture of two unseparable epimers with a yield of 55%. Treatment of 8 by allyltrimethylsilane in 

the presence of TiC14 at -78°C afforded cyclohexanone 9 (2:1 mixture of ot-butylketones) 15 with a 

complete control of the anti relative configuration for the alkyl groups at C-3 and C-5 (yield = 92%). 

Conversion of 9 into the ketoaldehyde 10 started with the chemioselective hydroboration of the alkene 

moiety using catecholborane in the presence of Rh(PPh3)3CI followed by oxidative work-up with 
H202/NaO H t6, 17. This provided the corresponding alcohol which was transformed into the aldehyde 

10 by oxidation with pyridinium chlorochromate. The transformation of 9 to 10 was achieved with an 

overall yield of 65%. Finally treatment of 10 with aqueous HCI in THF (3.0 N) at 30 °C for 7 hr gave a 

separable 1:1 mixture of the epimeric ~-butylcyclohexanones (+) - l l a  18 (yield = 35%) and ( - ) - l ib  19 

(yield = 25%). For these two products, the enantiomeric excess was 92 % as determined by 1H NMR 

using Eu(hfc)3 derivative. 
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Since the conversion of  ( + ) - l l a  and ( - ) - l i b  into (+)-ptilocaulin (+)-1 has already been achieved 

our work realizes a formal synthesis of (+)-ptilocaulin. 

Scheme H: Synthesis of (+)-Ptilocaulin 
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i )KF/AI20 3, tBuOOH, 25°C, 80%; ii) a- LDA, -78°C; b- n-BuLi -23°C; c- TsOH, 80%; 

iii) (R,R)-l,2-diphenylethane-l,2-diol, PPTS, 80°C, 83%; iv) ZnEt 2, CH2I 2, CH2C12, 0°C, 95%; v) HCI 

(2.7 N)/MeOH, 25°C, 90%; vi) hv, NEt 3 (10 eq), Li(CIO4) (5eq), CH3CN, 70%; vii) a- LDA, -78°C, TMSCI; 

b- Br 2, THF, 0°C; c- Li2CO 3, LiBr, DMF, 130°C, 55%; viii) TiCI 4, allylsilane, -78°C, 92%; 

ix) a- catecholborane, Rh(PPh3)3CI; b- H202, NaOH, 83%; x) PCC, CH2CI 2, 25°C, 83%; xi) HCI/TI-IF (3 N); 

30°C; separation by flash chromatography (petroleum ether/AcOEt: 95/5). 
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