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respect to the cyclohexane ring, as illustrated in Scheme 
11. We designate 7 a9 the syn-anti-syn configuration. This 
stereochemical course of epoxidation of 6 is indeed sur- 
prising since Dreiding models suggest that the syn ap- 
proach of the mCPBA is sterically less encumbered than 
the anti approach. It appears that stereoelectronic factors 
play a role in this unusual epoxidation. On triphenyl- 
phosphine deoxygenation of endoperoxide 2b in CHC13 at  
25 "C the epoxydiene 8 was obtained in 70% yield (mp 
81-82 "C, recrystallized from CH2C12/n-C6H14 mixture 
after silica gel chromatography at  -15 0C).6*12 Finally, on 
diimide reduction1' of endoperoxide 2b the saturated bi- 
cyclic peroxide 9 was obtained in 80% yield (mp 123 "C, 
recrystallized from n-C6Hl4)!J3 Its structure is conf i ied  
by independent synthesis starting from ~yclooctatriene.'~ 

The successful singlet oxygenation of the bicyclic valence 
isomer of cyclooctatetraene opens up new avenues for its 
synthetic manipulation and utilization. Preliminary efforts 
reveal that cyclooctatetraene itself can be oxygen difunc- 
tionalized via indirect routes to the potentially valuable 
endoperoxide 2a.15 
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Palladium-Catalyzed Polyhetero-Claisen 
Rearrangement 

Summary: The S - N allylic rearrangement of S-allyl- 
thioimidates is performed efficiently by the catalysis of 
Pd(I1) salt to give N-allylthioamides (71-100% yields). 

Sir: The thioamide group has increasingly been recognized 
as a useful synthon in organic syntheses.' Although the 
transformation of secondary thioamides to tertiary thio- 
amides is sometimes required in a reaction sequence, a 
general and satisfactory procedure for such transformation 
is presently lacking.2 One apparent possibility is the 
utilization of the rearrangement of S-allylthioimidates to 
N-allylthioamides, but this type of S - N rearrangement 
is one of the least studied polyhetero-Claisen rearrange- 
ments: probably owing to the many possible side reactions 
(e.g., double bond isomerization, deallylation, etc.). 

We have found that Pd(I1) catalyzes nicely the S - N 
allyl group migration of S-allylthioimidates and we report 
the very efficient N-allylation reaction of secondary thio- 
amides. 

S-Allylthioimidate (l), upon heating in tetralin at 150 
"C for 4 h, provided mainly the double bond isomerization 
product, S-propenylthioimidate (3, 93%), together with 
a small amount of the desired rearrangement product, 
N-allyl-N-methylthiobenzamide (2,7%) (Scheme I). On 
the other hand, in the presence of 1 mol% Pd(I1) 1 was 
found to rearrange selectively to give 2 (THF, reflux, 2 h). 

Some preliminary results are summarized in Table I, 
which reveals the efficiency and some interesting features 
of the reaction. The efficiency of the Pd(I1) salt (as PdC12 
or PdC12-(PhCN)2) is evident by a comparison of entries 
1 and 3. Under the same conditions except for the absence 
of Pd(II), no reaction took place and 1 was recovered 
completely. Triphenylphosphine retards the reaction 
(entry 2). Neither Pd(0) (as tetrakis(tripheny1- 
ph0sphine)palladium) nor other metal salts (NiC12, CuC1, 
HgC12)4 effected the S - N rearrangement. Accompanied 
by these observations, the regiospecific rearrangements of 
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Table I. Palladium(I1 )-Catalyzed Rearrangement of 8- Allylthioimidates to N- Allylthioamides 
entry S-allyll;hioimidatea conditions conv, %C productd yield, %e 

1 If  PdCl,(PhCN),, THF, reflux, 8 h 82 2 99 
2 I f  PdCl,(PPh,),, THF, reflux, 5 h 20 2 

4 3h - 4 C H 3  PdCl,(PhCN),, THF, reflux, 24 h 83 y 3  98 
3 If tetralin, 150 OC, 4 h 97 2 ( 7 )  + 3 (93)  

I 
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4 S 

5 
5 4 neat, 170  "C O B  - 

Fh YCH3' PdCl,(PhCN),, THF, reflux 2 h 100 CH3 94 
I y 6 

s-+ p y -  
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6 7 
7 1  as PdCl,(PhCN),, THF, reflux, 24 h 45 7 i ) -  'h/ \s 

4 L, 
93  

91 hS 

lo QtS PdCl,(PhCN),,' THF, reflux, 2 h loo dS 

PdCl,(PhCN),, THF, reflux, 2.5 h (8; PJ 
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A) PdCl,(PhCN),, THF, reflux, 24 h 9 2  
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.& b-pdc'2 
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Conversion is determined by VPC (Silicon DC550). 
a A syn and anti mixture (1, 1:l; 4, 1:l; 6, 1:l). 

mol % PdCl,(PPh,), is applied. 
pounds are satisfied by spectral and analytical data. e All products (except for 15) were purified by Kugelrohr distillation. 
Yields refer to the isolated ones based on conversions. f The starting thioimidate 1 is contaminated with a small amount 
(<8%) of &propenyl isomer. g Complete recovery of starting material. The starting thioimidate 6 is contaminated with - 20% S-crotyl isomer (4). but a mixture of these isomers is kinetically separated to give 7 selectively, with remaining 4 

Generally 1.0-1.1 mol % palladium salt is used. For entry 2, 1.7 
The structures of all new com- 

9 1  

96 

unchanged. -i  An equimoiar amount of Pd(I1) salt is used. 

S-crotyl- and S-methallylthioimidates to N-methallyl- 
(entry 4) and N-crotylthioamides (entry 6), respectively, 
speak against the intermediacy of ?r-allylpalladium species.6 
The most probable mechanism is illustrated in Scheme 11, 
which involves imino (C-3) palladation (C-2) to form an 
intermediate B. A similar mechanism has been proposed 
by Overman for the palladium(I1)-catalyzed Cope rear- 
rangements and allylic rearrangement of allyl acetates.' 
Very recently Gompper et al. have reported acceleration 
of the rearrangement of S-allylthioimidates by electron- 
withdrawing substituents a t  the 2-position of the allyl 
group, and they isolated an intermediate like B (with a 
benzoyl or carbethoxy group in place of Pdh8 On the other 
hand, S-allylthioimidates with a substituent (CH3, Ph, or 
C1) a t  the 2-position of the allyl group were found to be 
unreactive and were recovered completely independent of 
the presence or absence of Pd(I1). This interference of 
rearrangement by the 2-substituents might be also ra- 
tionalized by Scheme I1 on the basis of an unfavorable 
imino ((2-3) palladation (C-2), which now requires Pd-C 
(tertiary) bond formation. 

(4) Overman, L. E. J.  Am. Chem. SOC. 1974,96, 597; 1976,98, 2901; 
Tetrahedron Lett. 1975, 1149. 

(5) For a comprehensive review, see: Trost, B. M. Tetrahedron 1977, 
33, 2615. 

(6) Overman, L. E. J.  Am. Chern. SOC. 1980,102, 865. 
(7) (a) Henry, P. M. J.  Am. Chern. SOC. 1972,94,5200. (b) Overman, 

L. E.; Knoll, F. M. Tetrahrdron Lett. 1979, 321. 
(8) (a) Gompper, R.; Kohl, B. Tetrahedron Lett. 1980, 907. (b) See 

also: Gompper, R.; Ulrich, W.-R. Angew. Chern. 1976, 88, 298, 300. 
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In marked contrast to allyl group migration to the car- 
bon CY to the thiocarbonyl group (probably via ketene 
S,N-acetal) observed for the thermal (-200 "C) rear- 
rangement of five- (8) and seven-membered cyclic S-al- 
lylthioimidates (10): palladium(I1) catalyzed the selective 
S - N rearrangement of these imidates to provide N-al- 
lylthiopyrrolidone and N-allylthio-waprolactam, respec- 
tively (entries 7, 8). 

The last two examples in Table I (entries 9, 10) deserve 
some comment. The S - N rearrangement of N-acyl- 
2-(allylthio)imidazoline (12) requires a high reaction tem- 
perature and prolonged reaction timelo (145 OC, 72 h), 

(9) Black, D. St. C.; Eastwood, F. W.; Okgraglik, R.; Poynton, A. J.; 

(10) Kohn, H.; Arceneaux, J. H. J. Org. Chem. 1977, 42, 2339. 
Wade, A. M.; Welker, C. H. A w t .  J. Chem. 1972,255, 1483. 
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while in the presence of 1 mol% PdC12(PhCN)2 the rear- 
rangement attains completion by refluxing in THF for 24 
h. With 1 equiv of PdC12(PhCN)2 the rearrangement is 
complete within 1 h a t  room temperature and gives a 
precipitate of a 1:l complex of PdC12 and 13. Compound 
13 can be isolated by treatment of the complex with excesa 
pyridine. The technique of stabilization of the product 
by complex formation is successfully applied to the ther- 
modynamically unfavorable rearrangement” of S-allyl-2- 
mercaptopyridine (14) to l-allyl-2-thiopyridone ( 15).12J3 

The following example is illustrative of the simpIicity 
and utility of this catalytic reaction (entry 1). A THF ( 5  
mL) solution of S - a l l ~ l - N - m e t h y l t h i o b e ~ ~ ~ t e  (1 mmol) 
and PdC12(PhCN)2 (0.01 mmol) is refluxed under argon 
for 8 h. After evaporation of THF, the residue is subjected 
directly to a Kugelrohr distillation to give N-allyl-N- 
methylthiobenzamide in 81% yield [bp 150 OC (1.5 
mmHg)] .14 

A Palladium-Catalyzed Stereospecific Substitution 
Reaction of Homoallylzincs with 
8-Bromo-Substituted a,@-Unsaturated Carbonyl 
Derivatives. A Highly Selective Synthesis of 
Mokupalide’ 
Summary: Stereodefined homoallylzinc halides readily 
participate in a Pd-catalyzed stereospecific (198%) sub- 
stitution reaction with @-bromo-substituted a,&unsatu- 
rated carbonyl derivatives, thereby providing a highly 
stereoselective and efficient route to butenolides and fu- 
rans of terpenoid origin, such as mokupalide (1) and 
dendrolasin (2). 

Sir: We report that the Pd-catalyzed reaction of alkylzinc 
derivatives with alkenyl halides reported recently by us2 
can readily be adapted to  effect the “conjugate 
substitution” reaction3” of stereodefined homoallylzinc 
derivatives with 8-halo-a,@-unsaturated carbonyl deriva- 
tives (eq 1). We further report that the reaction is well 

Me 

suited for the selective synthesis of butenolides and furans 
of terpenoid origin, such as mokupalides (1) and dendro- 
iasin7 (2). 
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