N-Heterocyclic Phosphenium, Arsenium, and Stibenium Ions as Ligands in Transition Metal Complexes: A Comparative Experimental and Computational Study

Sebastian Burck, Jörg Daniels¹, Timo Gans-Eichler², Dietrich Gudat*, Kalle Nättinen^{1), 3}, Martin Nieger¹

Stuttgart, Institut für Anorganische Chemie der Universität

Received December 27th, 2004.

Dedicated to Professor Gerd Becker on the Occasion of his 65th Birthday

Abstract. Reaction of 2-chloro-1,3,2-diazaarsolenes and -diazaphospholenes with $TI[Co(CO)_4]$ gives instable complexes of type $[Co(ER_2)(CO)_4]$ which decarbonylated to yield $[Co(ER_2)(CO)_3]$. Spectroscopic and X-ray diffraction studies revealed that the tetracarbonyl complexes can be formulated as ion pair for E = P and as covalent metalla-arsine for E = As, and the tricarbonyl complexes as carbene-like species with a formal E=Co double bond. A similar reactivity towards $TI[Co(CO)_4]$ was also inferred for 1,3,2diazastibolenes although the products were not isolable and their constitution remained uncertain. Evaluation of structural and computational data suggests that the weak and polarized Co–As bond in $[Co(AsR_2)(CO)_4]$ can be characterized as an "inverse" $M\rightarrow L$ donor-acceptor bond. The computational studies disclosed further $\eta^2(EN)$ -coordination of the EN_2C_2 heterocycle as an alternative to the formation of a carbene-like structure for $[Co(ER_2)(CO)_3]$. The η^2 -complex is less stable for E = P but close in energy for E = Asand more stable than the carbene-like complex for E = Sb.

Keywords: Carbene analogues; Phosphenium complexes; Arsenium complexes; π -Acceptor ligands; Metal-ligand multiple bonding

Introduction

Phosphenium cations (I, E = P) have since their discovery some thirty years ago constantly remained in the focus of research [1]. A great deal of the interest in these species was – and still is – initiated by their ability to act as σ -donor/ π -acceptor ligands in transition metal complexes II (E = P) with similar molecular and electronic structures as Fischercarbene complexes [1, 2], and to stabilize electrophilic complexes with late metal atoms [3].

Stable cations with heavier dicoordinate group-15 elements such as arsenic (I, E = As [4–7]), antimony (I, E = Sb [8]), and bismuth (I, E = Bi [8]) have likewise been prepared, but coordination chemical studies involving these species are largely confined to the formation of complexes with Lewis bases [5, 9–11]. Well characterized carbene-analogue transition metal complexes II (E = As, Sb) with formal double bonds to As and Sb are as yet unknown, even if complexes [CpMo(CO)₂=EMe₂] (E = As, Sb) were identified by matrix isolation techniques [12], and metalla-arsine and -stibine complexes with pyramidal coordination at the pnicogen atom and formal M-E single bonds have been described [13, 14].

E-mail: gudat@iac.uni-stuttgart.de

We have recently reported on the synthesis of stable *N*-heterocyclic arsenium and stibenium cations III (E = As. Sb) [15, 16]. Knowing that the corresponding phosphenium analogues (III, E = P) form transition metal complexes (IV, E = P) that are stabilized by a high degree of metalphosphorus double bonding [17], we conceived that extension of this chemistry to ligands with heavier group 15 elements might allow to access as yet unprecedented stable arsenium and stibenium complexes. In this work we report on the generation of 1,3,2-diazaphospholenium, -arsolenium, and -stibolenium complexes IV (E = P, As, Sb; M = $Co(CO)_3$), the first structural characterization of an arsenium complex IV and a precursor V where the metal-ligand interaction is best described as "inverse" dative bond involving $M \rightarrow L$ charge transfer, and on computational studies aiming at a comparison of the ligand properties of the phosphenium, arsenium, and stibenium ligands in the complexes IV and V, respectively.

^{*} Prof. Dr. Dietrich Gudat

Institut für Anorganische Chemie der Universität Stuttgart Pfaffenwaldring 55

⁷⁰⁵⁵⁰ Stuttgart

Fax: +49 (0)711 685 4241

¹⁾ Institut für Anorganische Chemie der Universität Bonn

²⁾ current address: Institut für Chemie, Universität Hohenheim

Results and Discussion

Complex syntheses

Although earlier work by Nakazawa et al. demonstrated the use of strongly back-donating 16 valence electron $[M(CO)_3]$ (bipy)] fragments (M = Mo, W; bipy = 2,2'-bipyridine) for a highly efficient stabilization of phosphenium complexes [2, 18], we have previously established that N-tBu substituted 1,3,2-diazaphospholenes fail to react with $[W(CO)_3-$ (bipy)(MeCN)], presumably because of sterical reasons [17]. The desired 1,3,2-diazaphospholenium complexes were, however, easily accessible when N-aryl substituted diazaphospholene precursors were used [17]. Surprisingly, neither N-tBu nor N-aryl substituted 2-chloro-1.3.2-diazaarsolenes or -stibolenes nor the corresponding cations reacted with [M(CO)₃(bipy)(MeCN)]. Similar negative results were observed when other neutral transition metal complexes such as $[W(CO)_5(C_8H_{14})]$ or $[Pt(C_2H_4)(PPh_3)_2]$ were employed. Facing this general failure to prepare complexes of the Asand Sb-centered cations with neutral metal fragments, we turned to reactions with metal carbonylate anions, anticipating that enhanced electrostatic attraction between the reactants might provide an additional driving force for complex formation. To this end, the reactions of the 2-chlorosubstituted heterocycles 1, 5, 9 (scheme 2) with $Tl[Co(CO)_4]$ were studied.

Reaction of equimolar amounts of the solid *P*-chlorodiazaphospholene **1a** and Tl[Co(CO)₄] in CH₂Cl₂ at -70 °C and slow warming to ambient temperature produced solid TlCl and a red solution which was stable for a short time before decomposing under evolution of CO. As the ³¹P{¹H} NMR spectrum of the initial solution displayed the signal of the cation **2a** formed by loss of chloride from **1a** [19], and both IR (v(CO) at 1889 cm⁻¹) and ⁵⁹Co NMR spectra (sharp signal at δ^{59} Co -2979) revealed the presence of [Co(CO)₄]⁻ [20], the initial product was formulated as ionic 1,3,2-diazaphospholenium cobaltate **3a**. Considering the absence of any broadening of the ⁵⁹Co NMR line or splitting of the single IR-active $F_2 v(CO)$ mode, the spectral data point to a very low degree of intermolecular interaction which might perturb the local T_d symmetry in the anion [20]. This suggests that the solution structure of **3a** is presumably best described as a solvent separated ion pair.

The cleavage of CO from **3a** was accompanied by the appearance of a new ³¹P NMR signal at lower field (δ^{31} P 234.7) and two new IR bands at 2015 and 1948 cm⁻¹. These data suggest conversion of **3a** into a single product which was formulated as the carbene-analogue tricarbonyl complex **4a**. Direct formation of **4a** was observed when **1a** and Tl[Co(CO)₄] were reacted at ambient temperature in toluene, and treatment of **1b** with Tl[Co(CO)₄] under the same conditions yielded the analogous complex **4b**. Both **4a**,**b** were isolated as red, slightly air and moisture sensitive crystalline solids and their constitution was confirmed by analytical and spectroscopic data and single-crystal X-ray diffraction studies.

The reaction of $Tl[Co(CO)_4]$ with the 2-chloro-1,3,2-diazaarsolene 5b at room temperature in MeCN proceeded, in the same way as with 1a, via elimination of TICl and formation of a red solution which decomposed slowly under evolution of CO if stored for prolonged time above -30 °C. In contrast to the reaction of **1a**, crystallization at -25 °C allowed to isolate a moderate vield of the initial product. Since the reaction occurred without liberation of CO and the IR spectrum displayed a pattern of three v(CO) bands $(\bar{v} = 2004, 1934, 1928 \text{ cm}^{-1})$ which is in accord with an assignment to the three IR-active modes $(2 a_1 + e)$ of a complex $[Co(CO)_4(L)]$ having local C_{3v} symmetry, the product was formulated as the metalla-1,3,2-diazaarsolene 7b. The marked deviation of the IR data of 7b from those of $[Co(CO)_4]^-$ suggest that, unlike as in 3a, a substantial covalent interaction between As and Co is present. This proposal was confirmed by a single-crystal X-ray diffraction study of 7b.

In solution, **7b** decarbonylated easily to afford the carbene-analogue complex **8b** which was identified by spectro-

Scheme 2 (R = tBu (1a, 3a, 4b), Mes (1b, 4b-9b)).

scopic data and a single-crystal X-ray diffraction study. The same species was also identified by ¹H NMR and IR studies as product of the reaction of Tl[Co(CO)₄] with the diazaarsolenium triflate **6b** [16]. The most significant spectral data comprise the blue shift for the v(CO) bands ($\bar{v} = 2023$, 1964 cm⁻¹) with respect to **4b** ($\bar{v} = 2015$, 1945 cm⁻¹).

Finally, reaction of $Tl[Co(CO)_4]$ with the 2-chloro-1,3,2diazastibolene **9b** in d_8 -toluene or hexane at -78 °C afforded a precipitate of TICl and a red solution whose color first faded and then turned black when the solution was warmed to room temperature. Although no isolable product was obtained, ¹H NMR spectra disclosed formation of a transient species which decayed rapidly to afford a diazadiene, (MesN=CH-)₂, and further unidentifiable products. IR spectra showed two strong ($\bar{v} = 2062, 1977 \text{ cm}^{-1}$) and two further weak v(CO) bands ($\bar{v} = 2002, 1942 \text{ cm}^{-1}$) attributable to transient products. By analogy to the reactions of 1a,b and 5b, we interpret the available data in terms of the presence of a mixture of a tetracarbonyl complex (minor product) and a tricarbonyl complex (major product) which undergo dynamic exchange via CO-transfer on the NMR time scale (thus explaining the presence of a single set of signals) but are distinguishable on the IR time scale. Evidence for a similar dynamic equilibrium between the Ascomplexes 7b and 8b was provided by line broadening and coalescence effects in the ¹H NMR spectra of solutions of partially decarbonylated 7b.

Crystal structure studies. The molecular structures of the 1,3,2-diazaarsolene complexes **7b** and **8b** are displayed in Figures 1 and 2, respectively. The molecular structures of the diazaphospholenium complexes **4a,b** are very similar to the latter and are not shown. All crystals consist of isolated mononuclear complexes that exhibit no significant intermolecular interactions. Selected bond distances and angles for all four complexes are listed in Table 1.¹

The phosphenium complexes **4a**,**b** crystallize in the space group P2₁/n and P2₁/c, respectively. The phosphorus and cobalt atoms have distorted trigonal planar and tetrahedral coordination, respectively. The Co-P bond in 4a is slightly longer than in 4b (2.0450(5) vs. 2.0018(4)Å), reflecting presumably the larger steric bulk of N-tBu as compared to N-Mes groups and a concomitantly increased steric congestion between the phosphenium fragment and the ancillary CO ligands. Both bond lengths deviate not significantly from those in the known complexes $[(CO)_3Co=P(O-C_6H_2tBu_3)(Cp^*)]$ (Co-P 2.010(19) Å [21]) and $[(CO)_3Co=P(O-C_6H_2tBu_3)(C_2(Ph)Co_2(CO)_6)]$ (Co-P 2.009(3) A [22]) and suggest that the metal-ligand interaction may be described as in other neutral phosphenium complexes [1, 2] as a formal double bond. The remaining bond distances and angles in 4a,b (apart from those in N-tBu and N-Mes substituents) differ not significantly. The **Table 1** Selected bond distances (in Å) and angles (in °) for the complexes **4a,b**, **7b**, and **8b**. The numbering scheme for all three compounds is identical to the one used in Figures 1 and 2.

	4a	4b	7b	8b
Co(1)-P(1)/As(1)	2.0450(5)	2.0018(4)	2.7263(4)	2.129(1)
Co(1)-C(1A)	1.760(2)	1.784(2)	1.789(3)	1.777(1)
Co(1)-C(1B)	1.772(2)	1.773(2)	1.790(3)	1.774(4)
Co(1)-C(1C)	1.775(2)	1.781(2)	1.796(3)	1.774(4)
Co(1)-C(1D)			1.822(3)	
P(1)/As(1)-N(2)	1.6835(14)	1.6720(12)	1.846(2)	1.811(2)
P(1)/As(1)-N(5)	1.6838(13)	1.6733(13)	1.835(2)	1.807(3)
N(2)-C(3)	1.387(2)	1.391(2)	1.394(3)	1.381(4)
C(3)-C(4)	1.330(2)	1.332(2)	1.330(3)	1.355(5)
C(4)-N(5)	1.388(2)	1.394(2)	1.396(3)	1.381(4)
N(5)-As(1)/P(1)-N(2)	90.33(7)	89.17(6)	85.40(8)	85.5(1)
N(5)-As(1)/(P(1)-Co(1))	135.10(5)	133.83(5)	111.59(6)	141.6(1)
N(2)-As(1)/P(1)-Co(1)	134.50(5)	136.59(5)	103.15(6)	132.9(1)
$\Sigma_{\text{angles}}(\text{P1/As1})$	359.9(2)	359.6(2)	300.1(2)	360.0(3)

P-N and N-C bonds in the diazaphospholene rings are slightly longer and the C=C bonds shorter than in the cation **2a** (P-N 1.658 – 1.665 Å, N-C 1.368 – 1.377 Å, C=C 1.341 – 1.353 Å [19]). Although these deviations are small (approx. 2 pm for P-N and 1 pm for N-C and C=C bonds), their direction and magnitude matches the complexation induced changes in bond lengths in cationic diazaphospholenium tungsten complexes [17] and may in line with the generally acknowledged model of bonding in aminophosphenium complexes [2] be interpreted by assuming that the strong M-P π -interaction introduces a massive reduction in cyclic intraligand π -delocalization.

The crystals of the metalla-arsine **7b** (space group $P\bar{I}$) are composed of molecular complexes with a central cobalt atom in a distorted trigonal bipyramidal coordination sphere (Fig. 1). All equatorial and one axial coordination sites are occupied by carbonyl groups and the second axial site by the As-atom of the diazaarsolene unit. The equatorial Co-C bonds are equal and by approx. 4 pm shorter

Fig. 1 Molecular structure of **7b**. Thermal ellipsoids are drawn at 50 % probability level, and H atoms have been omitted for clarity. Selected bond lengths and angles are given in Table 1.

¹⁾ In order to facilitate the discussion of structural features, we applied a universal numbering scheme for all compounds which is in some cases different from the one used in the cif-files.

than the axial one; all Co-C bonds are longer than in $[Co(CO)_4]^-$ (avg. distance in known tetracarbonyl cobaltates 1.75(4) pm [23]) but similar as in metalla-germanes of the type $[R_3Ge-Co(CO)_4]$ or $[R_2Ge(Co(CO)_4)_2]$, respectively [24, 25]. A most remarkable feature of 7b is the extremely long Co-As bond (2.7264(4) Å) whose distance substantially exceeds those in cobalt complexes of tertiary arsines (As-Co 2.33(4) Å [23]) or cobalta-arsines $[L_nCo-AsR_2]$ (Co-As 2.39(3) Å [23]). The As(1) atom exhibits a pyramidal coordination geometry (sum of bond angles 300°) and the diazaarsolene ring is not exactly planar as in 4a [16] but exhibits a very flat envelope conformation similar to that in the P-chloro-diazaphospholene 1a [19]. The endocyclic As-N (avg. 1.840(2) Å) and C-N bonds (avg. 1.395(2) Å) are longer and the C=C bond (1.330(3) Å) is shorter than in the cation 6b (avg. distances: As-N 1.832(2), C-N 1.349(2), C=C 1.362 Å [16]), thus indicating a higher π -bond localization [16, 19] in **7b**.

If one considers all structural features, the bonding situation in **7b** resembles that in 2-chloro-diazaphospholenes **1**. The unique P-Cl bond lengthening in these compounds was attributed to ionic bond polarization $(P^{\delta+}-Cl^{\delta-})$ and lead to a description as donor/acceptor complexes of a diazaphospholenium cation and a chloride anion [19]. The polarization may be rationalized in the VB picture by assuming that the high cation stability of a diazaphospholenium fragment stabilizes the ionic canonical structures 1", 1" (scheme 3) relative to the covalent structure 1' and thus emphasizes ionic bonding contributions and charge transfer to the chlorine atom. Adapting this picture suggests that the bonding in 7b can be likewise described by bond/no-bond resonance between the canonical structures 7' - 7'''. Assuming that the observed bond lengthening points as in the case of 1 to a considerable contribution by the ionic structures, the Co-As bond adopts substantial character of an "inverse" donor-acceptor bond involving charge transfer from cobalt atom into the empty p(As)-orbital of a diazaarsolenium cation.

Scheme 3

Crystals of the arsenium complex 8b (space group P2₁/c) contain molecules (Fig. 2) with similar structural features

Fig. 2 Molecular structure of **8b**. Thermal ellipsoids are drawn at 50 % probability level, and H atoms have been omitted for clarity. Selected bond lengths and angles are given in Table 1.

as the lighter congeners. Apart from the As-Co and As-N bond lengthening and the decrease of the N-As-N angle which reflect the larger atomic radius of an arsenic as compared to a phosphorus atom, all bond distances in the EN₂C₂-rings (E = P, As) and Co(CO)₃ moieties of **8b** and **4b** are equal within experimental error, and all atoms in the AsN₂C₂ ring of **8b** still display planar coordination (sum of angles 360°). The As-Co bond in **8b** (2.129(1) Å) is by 36 pm (11 %) shorter than the average single bond in [L_nCo-AsR₂] (2.39(3) Å [23]), and by 60 pm (22 %) shorter than the unusually long bond in **7b**. Evaluation of further structural variations in the diazaarsolene units of **8b** and **7b** reveals a small but distinguishable shortening of As-N bonds in the former by approx. 3 pm whereas shifts in C-N and C=C distances are not considered significant.

All features suggest clearly that the bonding between the cobalt and arsenic atoms in **8b** may be described as in phosphenium complexes [1, 2, 17] as a formal double bond resulting from superposition of a dative $L \rightarrow M \sigma$ -bonding and a retro-dative $M \rightarrow L \pi$ -bonding interaction between a 16VE $Co(CO)_3^-$ and a diazaarsolenium fragment. The shortening of the As-N bonds in **8b** with respect to **7b** suggests that as in diazaphospholenium complexes [17] residual intraligand π -delocalization may contribute to stabilize the positive charge on the As-atom.

Although the formation of dative/retro-dative double bonds has precedence in phosphenium complexes, the molecular structures of the dimeric dication 10 [26] and the complex 11 [13] (Scheme 4) suggest that the lone-pair of an adjacent sulfur or nitrogen atom may provide a more favorable donor site for interaction of an arsenium moiety with a Lewis acid than the lone-pair at arsenic atom. In consideration of these results it cannot be ruled out that the preference for a carbene-analogue structure for 8b is largely determined by the steric influence of the *N*-aryl substituents which renders the nitrogen lone-pairs inaccessible for attack by a Lewis acid.

Computational studies

In order to permit a profound discussion of structure and bonding in *N*-heterocyclic phosphenium, arsenium, and sti-

benium complexes, computational studies were carried out. To cut down computation times, model compounds carrying *N*-H substituents were used and interaction between ionic species with counter-ions or solvent molecules were neglected. Molecular structures of all compounds were obtained from energy optimizations, using the B3LYP density functional method [27] employed in the GAUSSIAN 98 suite [28] with sdd basis sets augmented by one set of polarization functions at all heavy atoms. The final structures of the metalla-diazaphospholene 3c, -arsolene 7c and -stibolene 13c are displayed in Fig. 3, and those of the carbeneanalogue complexes 4c, 8c, 14c and their isomers 4'c, 8'c, 14'c with η^2 -bound heterocyclic ligands in Fig. 4. All structures shown represent according to vibrational analyses local minima on the energy hypersurface. Selected bond distances of the complexes and the free cations 2c, 6c, and 12care listed in Table 2 and results of NBO population analyses [29] in Table 3.

The computed bond lengths of 4c and 7c (Tab. 2) are, regardless of the simplified structures of the model compounds, in close agreement with the experimental data of 4a,b and 7b (Tab. 1); the only notable discrepancy comprises the overestimation of the Co–As distance in 7c. We attribute this deviation to the neglect of inductive substituent effects in the model compounds and the inappropri-

Fig. 3 Representation of the computed molecular structures of the tetracarbonyl complexes 3c (a), 7c (b), and 13c (c). Selected bond lengths and angles are listed in Table 2.

Fig. 4 Representation of the computed molecular structures of the tricarbonyl complexes 4c (a), 8c (b), and 14c (c) and the η^2 -complexes 4'c (d), 8'c (e), and 14'c (f). Selected bond lengths and angles are listed in Table 2.

Table 2 Computed bond distances (in Å) and angles (in °) for the cationic ligands 2c, 6c, 12c, the tetracarbonyl complexes 3c, 7c, 10c, and the tricarbonyl complexes 4c/4'c, 8c/8'c, and 11c/11'c. The numbering scheme for all compounds is identical to the one used in Figures 1 and 2.

E Symm.	2c P C _{2v}	3c P C ₁	4c P C _s	4'c P C ₁	$6c \\ As \\ C_{2v}$	7c As Cs	8c As C _s	8'c As C ₁	$12c$ Sb C_{2v}	$ \begin{array}{c} \textbf{13c}\\ \textbf{Sb}\\ C_{s} \end{array} $	14c Sb <i>C</i> _s	14'c Sb C ₁
Со-Е		2.885	2.008	2.255		2.885	2.142	2.359		2.960	2.376	2.524
Co-C _{eq}		1.788	1.778	1.769		1.791	1.774	1.764		1.791	1.761	1.756
		1.775	1.781	1.775		1.776	1.780	1.777		1.780	1.796	1.790
		1.771		1.793				1.787				1.801
Co-C _{ax}		1.792				1.788				1.788		
E-N	1.685	1.708	1.704	1.777 1.737	1.817	1.840	1.835	1.912 1.873	2.028	2.037	2.052	2.140 2.078
N-C	1.375	1.398	1.394	1.426 1.391	1.364	1.397	1.387	1.421 1.387	1.358	1.399	1.378	1.418 1.378
C-C	1.378	1.359	1.361	1.354	1.385	1.360	1.366	1.357	1.392	1.361	1.375	1.363
$\Sigma_{ang}(E)$		302.1	359.8	279.4		299.4	359.0	249.1		290.9	331.9	231.5

Table 3 Natural populations of electrons on the $Co(CO)_x$ moieties and selected Wiberg Bond Indexes (WBI) for the cationic ligands 2c, 6c, 12c, the tetracarbonyl complexes 3c, 7c, 10c, and the tricarbonyl complexes 4c/4'c, 8c/8'c, and 11c/11'c.

	2c	3c	4c	4'c	6c	7c	8c	8'c	12c	13c	14c	14'c
q(Co(CO) _x		-0.49	-0.50	-0.28		-0.47	-0.52	-0.30		-0.47	-0.58	-0.29
WBI(E-Co)		0.24	0.67	0.49		0.24	0.60	0.47		0.25	0.52	0.43
WBI(E-N)	1.06	0.92	0.88	0.82	0.97	0.83	0.80	0.75	0.85	0.73	0.69	0.65
WBI(N-C)	1.21	1.11	1.12	1.04	1.26	1.12	1.15	1.05	1.31	1.13	1.20	1.07
WBI(C-C)	1.55	1.70	1.68	1.73	1.49	1.69	1.65	1.71	1.44	1.69	1.58	1.67

WBI(Co-N): 4'c: 0.18, 8'c: 0.19, 14'c 0.25

ateness of calculations referring to isolated molecules in the gas phase to model E-X bond polarization by intermolecular interactions in condensed phases; both effects have considerable influence on P-Cl distances in 2-chloro-1,3,2-diazaphospholenes [19]. The failure to reproduce an ion pair structure (which had been inferred in the case of **3a**) for **3c** may again be attributable to the overestimation of the electrostatic attraction between differently charged species in gas phase calculations.

The complexes 3c, 7c, 13c (Fig. 3) display all very similar molecular structures whose shapes resemble that of the cobalta-diazaarsolene 7b. Even though the Co-E distances are much longer than normal single bonds and, surprisingly, fail to reflect the change in the size of E, the results of NBO population analyses (Tab. 3) suggest a marked charge equalization between the $[Co(CO)_4]^-$ and $[E(NH)_2(CH)_2]^+$ fragments. All these features are best explained by the presence of a covalent Co-E interaction with low bond order which results (as judged by the Wiberg Bond Index, WBI) from population of the $\sigma^*(Co-E)$ orbital as a consequence of hyperconjugative interaction with the adjacent nitrogencentered lone-pairs. Both the trends in computed bond lengths in the EN_2C_2 rings and the electron population reveal a higher degree of π -bond localization than in the cations 2c, 6c, 12c. On the whole, all data further substantiate the description of the highly polarized Co-E bond in terms of bond/no-bond resonance between the canonical structures 7' - 7''' (scheme 3).

The tricarbonyl complexes 4c, 8c, and 14c (Fig. 4) contain planar heterocyclic ligands and cobalt atoms with tetrahedral and pnicogen atoms with planar (4c, 8c) or pyramidal (14c) coordination spheres that are connected by rather short Co-E bonds. The values of bond lengths and Wiberg Bond Indices are in accord with a similar bonding situation as in Fischer-type carbene-complexes, which is characterized by a superposition of E \rightarrow M charge transfer (σ -bonding contribution) and M \rightarrow E back-donation (π bonding contribution) to yield formal double bonds. As in diazaphospholene-complexes [17], M \rightarrow E back-donation attenuates π -interactions across the E-N bonds and supports the formation of a butadiene-dianion analogous 4π -system in the N₂C₂ part of the heterocycle.

The complexes 4'c, 8'c, 14'c (Fig. 4) feature metal atoms that are bound to three carbonyls and one η^2 -bound heterocyclic ligand in a Ψ -tetrahedral arrangement. The coordination of the pnicogen atom E is pyramidal and the Co–E bonds are 6 to 12 % longer than in the carbene-like isomers 4c, 8c, 14c, but still much shorter than in the tetracarbonyl complexes. Evaluation of structural data and NBO results (Tab. 3) suggests a decrease in E–N and N–C bond orders and an increase in C=C bond order with respect to 4c, 8c, 14c which implies a further π -bond localization; the observation of identical WBI values for uncoordinated and metal-bridged E–N bonds suggests that the larger bond lengths of the latter reflect mainly rehybridization at the nitrogen atom and not a lower π -bond order. In summary, the η^2 -complexes can be described as metallacyclic structures with polar Co–N and Co–E bonds that may be rationalized in terms of resonance between the canonical structures shown in scheme 5.

Insight into the energetic relation between the different types of complexes is feasible from inspection of the computed energies for the quasi-isodesmic reactions displayed in Scheme 6. Comparison of the energies of reactions (1) and (2) involving formal transfer of $Co(CO)_n$ units between different cationic ligands suggests that the tetracarbonyl complexes (3c, 7c, 13c) become slightly more stable and the tricarbonyl complexes (4c, 8c, 14c) less stable when the atomic number of E increases. The first trend parallels previous findings of 1,3,2-diazaarsolenium and -diazastibolenium ions being better chloride acceptors than analogous diazaphospholenium ions and reflects presumably a greater Lewis-acidity with increasing size and polarizability of the cationic center [15, 16]. The lower stability of carbene-like complexes with As- and Sb-centered ligands (8c, 14c) may be seen in the context of a growing reluctance of these elements to undergo isovalent orbital hybridization which is illustrated in a rising degree of s-character for the lone-pair at the pnicogen atom that is observed upon going from 3c, 4'c (E = P) to 7c, 8'c (E = As) and 13c, 14'c (E = Sb). As this effect disfavors formation of trigonal-planar frameworks of σ -bonds, it provides obviously a strong driving force for the pyramidal coordination of the Sb-atom in 14c and the stabilization of the η^2 -complexes 8'c, 14'c relative to the carbene-like isomers 8c, 14c, respectively (reaction (3), scheme 6).

Although the implication of the energies of reaction (3) - that P- and As-centered cations (2c. 6c) form preferably Co(CO)₃-complexes with carbene-like structures and the Sb-centered cation 10c η^2 -complexes – is in accord with the observed constitution of 4a,b and 8b, generalization of this prediction is prevented by the present unfeasibility to assess the impact of steric and electronic factors associated with the presence of bulkier substituents at the nitrogen atoms. Still, the presence of a sizeable energy difference between the isomeric species 4c and 4'c in combination with the abundance of known carbene-like phosphenium complexes [1, 2] suggests that the formation of η^2 -phosphenium complexes may not be likely. This situation may be different for 1,3,2-diazaarsolenium ions where the preference for a certain coordination mode is less obvious and the existence of species as the complex 11 [13] suggests that the order of relative energies may be adjustable by careful tuning of steric and electronic requirements of substituents. The same arguments hold for the Sb-centered cations where it is conceivable that the energetic preference by some 4 kcal/mol in favor of the η^2 -complex can be overcome by steric blocking of the nitrogen donor sites by bulky substituents.

Conclusions

It was shown that 1,3,2-diazaarsolene derivatives react with $Tl[Co(CO)_4]$ in the same way as the analogous phosphorus compounds to form complexes of formulae $[Co(ER_2)(CO)_4]$ and $[Co(ER_2)(CO)_3]$, respectively. A similar reactivity was also inferred for 1,3,2-diazastibolenes although the products were not isolable and their constitution remains uncertain. In spite of these general analogies, a close inspection of structure and bonding in the products formed reveals differences that reflect the changing bonding preferences of

Scheme 6 Computed energies (in kcal/mol at the b3lyp/sdd(pol) + zpe level) for quasi-isodesmic ligand transfer reactions.

the individual elements. The complexes $[Co(ER_2)(CO)_4]$ exist as ion pairs for E = P and as covalent metalla-arsines for E = As; the Co-As bond may be represented as "inverse" M \rightarrow L donor-acceptor bond, leading to a similar bonding description as in 2-chloro-1,3,2-diazaphospholenes or -diazaarsolenes and highlighting the importance of ligand electrophilicity as driving force for complex formation. The trend in Co-E interactions parallels previous findings of diazaarsolenium ions being better chloride acceptors than diazaphospholenium ions and is attributed to a growing Lewis-acidity with increasing size and polarizability of the ligand atom.

The tricarbonyl complexes $[R_2E=Co(CO)_3]$ (E = P, As) can be described as carbene-like species with a formal double bond arising from superposition of $E \rightarrow M$ charge transfer (σ -bonding contribution) and M \rightarrow E back-donation (π -bonding contribution). Computational studies disclose that $\eta^2(EN)$ -coordination of the EN₂C₂ heterocycle provides an alternative bonding mode to the formation of a carbene-like structure which is less favorable for phosphorus containing rings but close in energy for arsenic and energetically even more favorable for antimony derivatives. The decreasing preference for the carbene-like coordination mode correlates with the reluctance of the heavier pnicogen elements to adopt a trigonal planar coordination geometry and is thus essentially attributable to the decreasing propensity for isovalent orbital hybridization and the presence of a lone-pair with an increasing degree of s-character.

Acknowledgement. We thank Dr. Joachim Opitz, Institut für Organische Chemie, Universität Stuttgart, for the recording of mass spectra.

Experimental Section

General Remarks: All manipulations were carried out under dry argon. Solvents were dried by standard procedures. NMR spectra: Bruker Avance 400 (¹H: 400.13 MHz, ¹³C: 100.6 MHz, ³¹P 161.9 MHz, ⁵⁹Co 94.95 MHz) in thf-D₈ at 30 °C; chemical shifts referenced to ext. TMS (¹H, ¹³C), 85 % H₃PO₄ ($\Xi = 40.480747$ MHz, ³¹P) 0.56 M K₃Co(CN)₆ ($\Xi = 23.727074$ MHz, ⁵⁹Co); positive signs of chemical shifts denote shifts to lower frequencies, coupling constants are given as absolute values. MS: Kratos Concept 1H, Xe-FAB, m-NBA matrix. IR spectra: Nicolet FT-IR Magna 550 or Perkin-Elmer Paragon, NaCl cells. Elemental analysis: Perkin-Elmer 2400CHSN/O Analyser. Melting points were determined in sealed capillaries.

DFT calculations (B3LYP) were carried out with the Gaussian 98 program package [28] using the SDD basis set augmented by one set of polarisation functions on all heavy atoms. The basis set employs a D95V split-valence basis set for the lighter atoms, and Stuttgart/Dresden ECPs at As and Sb. Harmonic vibrational frequencies and zero-point vibrational energies (ZPE) were calculated at the same level. All structures reported here are minima on the potential energy surface (only positive eigenvalues of the Hessian matrix).

1,3-Di-tert.-butyl-1,3,2-diazaphospholenium tetracarbonyl cobaltate (3a). A solution of Tl[Co(CO)₄] (375 mg, 1.00 mmol) in CH₂Cl₂ (5 ml) was cooled to -78 °C and a solution of **1a** (235 mg, 1.00 mmol) in CH₂Cl₂ (10 ml) was added drop wise. A white precipitate formed immediately. The mixture was slowly warmed to ambient temperature and the product formed characterized by IR and NMR spectroscopy. ³¹P{¹H} NMR: $\delta = 200.1$. $-{}^{59}$ Co NMR: $\delta = -2979$. – IR (NaCl, CH₂Cl₂): $\bar{\nu} = 1889$ cm⁻¹ (ν CO).

1,3-Di-tert.-butyl-1,3,2-diazaphospholenium tricarbonyl cobaltate (4a). Tl[Co(CO)₄] (750 mg, 2.00 mmol) and **1a** (470 mg, 2.00 mmol) were dissolved in toluene (20 ml). Evolution of CO was observed. The mixture was stirred for 2 h, the precipitate formed removed by filtration, and the solvents evaporated in vacuum. Recrystallization of the residue from MeCN (25 ml) at -25 °C afforded 532 mg (78 %) of **4a** as red crystals, mp.126 °C.

Anal. for $C_{13}H_{20}CoN_2O_3P$: calcd. C 45.63 H 5.89 N 8.19; found C 45.12 H 5.94 N 8.06 %.

¹H NMR (C₆D₆): δ = 6.35 (d, 2 H, ${}^{3}J_{PH}$ = 5.0 Hz, NCH), 1.40 (s, 18 H, CCH₃). – ${}^{13}C{}^{1}H$ NMR (C₆D₆): δ = 211.3 (br), 120.0 (d, ${}^{2}J_{PC}$ = 4.2 Hz, PNCH), 60.2 (d, ${}^{2}J_{PC}$ = 7.9 Hz, NCCH₃), 31.0 (d, ${}^{3}J_{PC}$ = 5.5 Hz, NCCH₃). – ${}^{-31}P{}^{1}H$ NMR (C₆D₆): δ = 234.7 (br). – IR (KBr, nujol mull): $\bar{\nu}$ = 2015, 1948 cm⁻¹ (ν CO).

1,3-Di-Mesityl-1,3,2-diazaphospholenium tricarbonyl cobaltate (4b). The reaction of $Tl[Co(CO)_4]$ (750 mg, 2.00 mmol) and **1b** (720 mg, 2.00 mmol) was carried out as described above for **3a** to 860 mg (92 %) of **4b** as red crystals, mp.199 °C.

Anal. for $C_{23}H_{24}CoN_2O_3P$: calcd. C 59.24 H 5.19 N 6.01, found: C 58.93 H 5.20 N 6.01 %.

¹**H** NMR: δ = 6.74 (s, 4 H, m-CH), 5.92 (d, 2 H, ³*J*_{PH} = 4.7 Hz, NCH), 2.10 (s, 12 H, *o*-CH₃), 2.05 (s, 6 H, *p*-CH₃).

(a, 121, o'CH3), 2.05 (a, 0.1, p'CH3). ^(a) Te{H} NMR: $\delta = 208.9$ (bp), 139.1 (d, ${}^{4}J_{PC} = 1.9$ Hz, m-C), 135.5 (d, ³J_{PC} = 3.9 Hz, o-C), 133.6 (d, ${}^{2}J_{PC} = 7.0$ Hz, *i*-C), 129.7 (d, ${}^{5}J_{PC} = 1.2$ Hz, *p*-C), 124.2 (d, ${}^{2}J_{PC} = 3.8$ Hz, PNCH), 21.0 (d, ${}^{6}J_{PC} = 0.7$ Hz, *p*-CH₃), 17.8 (d, ${}^{4}J_{PC} = 1.1$ Hz, o-CH₃). ³¹P{¹H} NMR: $\delta = 233.0$ (br). – IR (NaCl, CH₃CN): $\bar{\nu} = 2015$, 1945 cm⁻¹ (ν CO). – MS (EI, 70 eV, 380 K): m/e(%) = 466 (13) [M⁺], 438 (1) [M⁺-CO], 410 (39) [M⁺-2 CO], 323 (100) [M⁺-Co(CO)₃].

1,3-Di-Mesityl-1,3,2-diazaarsolenium tetracarbonyl cobaltate (7b). A solution of Tl[Co(CO)₄] (750 mg, 2.00 mmol) in MeCN (10 ml) was added drop wise to a solution of **5b** (800 mg, 2.00 mmol) in MeCN (10 ml). The precipitate formed was filtered off and the filtrate concentrated in vacuum. Storing the solution overnight at -30 °C gave a dark red crystalline precipitate which was collected by filtration to yield 400 mg (42 %) of **7b**, mp. 60 °C.

Anal. for $C_{23}H_{24}AsCoN_2O_3:$ calcd. C 54.12 H 4.7 N 5.49, found: C 53.62 H 4.79 N 5.6 %.

¹H NMR (C₆D₆): δ = 6.73 (s, 4 H, m-CH), 6.31 (s, 2 H, NCH), 2.04 (s, 18 H, o/p-CH₃). -¹³C{¹H} NMR: δ = 208.7 (br, CO), 139.1, 134.9, 135.9, 130.1 (m-CH), 127.2 (s, AsNCH), 21.0 (p-CH₃), 18.0 (o-CH₃). - IR (NaCl, CH₃CN): \bar{v} = 2004, 1934, 1928 cm⁻¹ (v CO).

1,3-Di-Mesityl-1,3,2-diazaarsolenium tricarbonyl cobaltate (8b). A solution of **7b** in hexane was stored for several h at ambient temperature. All volatiles were evaporated and the residue dissolved in little MeCN. Storing the solution overnight at -30 °C gave a small amount of a red crystalline precipitate of **8b**, mp. 60-65 °C.

¹H NMR (CD₂Cl₂): δ = 7.40 (s, 2 H, NCH), 7.11 (s, 4 H, m-CH), 2.40 (s, 6 H, *p*-CH₃), 2.26 (s, 12 H, *o*-CH₃). - ¹³C{¹H} NMR: δ = 204 (br, CO), 139.2 (*i*-C), 135.6(*p*-C), 134.2 (*o*-C), 129.6 (*m*-CH), 130.0 (AsNCH), 20.7 (*p*-CH₃), 17.5 (*o*-CH₃). - IR (NaCl, hexane): $\bar{\nu}$ = 2023, 1964 cm⁻¹ (ν CO).

Reaction of Tl[Co(CO)₄] with 9b. Tl[Co(CO)₄] (38 mg, 0.10 mmol) was added to a cooled (-78 °C) solution of **9b** (55 mg, 0.10 mmol) in d₈-toluene (1ml) or hexane (1 ml), respectively. The solution was

first warmed to -40 °C until a red color was observed, and then further to ambient temperature. The red product formed decomposed slowly, and the color of the solution turned black. The transient product was characterized in the reaction mixture byNMR (in d₈-toluene) or IR spectroscopy (in hexane solution). Isolation of a stable product was not feasible. $-{}^{1}$ **H** NMR: $\delta = 6.73$ (s, 4 H, *m*-CH), 6.23 (s, 2 H, NCH), 2.16 (s, 12 H, *o*-CH₃), 2.36 (s, 6 H, *p*-CH₃). - IR (NaCl, hexane): $\bar{\nu} = 2062$ (s), 1977 (s), 2002 (w), 1942 (w) cm⁻¹ (ν CO).

Crystal structure determinations

4a: red crystals, $C_{13}H_{20}CoN_2O_3P$, M = 342.2, crystal size 0.20 x 0.15 x 0.10 mm, monoclinic, space group P2₁/n (No. 14): a = 11.9463(4) Å, b = 8.9321(3) Å, c = 15.1454(7) Å, $\beta = 91.783(2)^\circ$, V = 1615.3(1) Å³, Z = 4, $\rho(\text{calcd}) = 1.41$ Mg m⁻³, F(000) = 712, $\mu = 1.17$ mm⁻¹, 8490 reflexes ($2 \theta_{\text{max}} = 55^\circ$) measured on a Nonius Kappa-CCD diffractometer at 123(2) K using MoK_{α} radiation ($\lambda = 0.71073$ Å), 3624 unique [R_{int} = 0.027] used for structure solution (Direct Methods, SHELXS-97 [30]) and refinement (full-matrix least-squares on F^2 , SHELXL-97 [31]) with 181 parameters, no absorption correction, H-atoms with a riding model, R1 ($I > 2\sigma(I)$) = 0.023, wR2 = 0.059, largest diff. peak and hole 0.274 and -0.310 e Å⁻³.

4b: red crystals, $C_{23}H_{24}CoN_2O_3P$, M = 466.3, crystal size 0.50 x 0.30 x 0.20 mm, monoclinic, space group $P2_1/c$ (No. 14): a = 19.9890(2) Å, b = 7.8653(1) Å, c = 15.1176(3) Å, $\beta = 101.619(1)^\circ$, V = 2328.1(1) Å³, Z = 4, $\rho(\text{calcd}) = 1.33$ Mg m⁻³, F(000) = 968, $\mu = 0.83$ mm⁻¹, 36218 reflexes ($2 \theta_{\text{max}} = 55^\circ$) measured on a Nonius Kappa-CCD diffractometer at 123(2) K using MoK_{α} radiation ($\lambda = 0.71073$ Å), 5281 unique [R_{int} = 0.059] used for structure solution (Direct Methods, SHELXS-97 [30]) and refinement (full-matrix least-squares on F^2 , SHELXL-97 [31]) with 277 parameters, empirical absorption correction from multiple reflections, H-atoms with a riding model, R1 ($I > 2\sigma(I) = 0.030$, wR2 = 0.081, largest diff. peak and hole 0.286 and -0.298 e Å⁻³.

7b: red crystals, $C_{24}H_{24}AsCoN_2O_4$, M = 538.3, crystal size 0.30 x 0.20 x 0.10 mm, triclinic, space group $P\bar{I}$ (No. 2): a = 10.6396(3) Å, b = 10.7829(3) Å, c = 11.2066(4) Å, $\alpha = 112.236(2)^{\circ}$, $\beta = 96.521(2)^{\circ}$, $\gamma = 93.104(2)^{\circ}$, V = 1175.8(1) Å³, Z = 2, ρ (calcd) = 1.52 Mg m⁻³, F(000) = 548, $\mu = 2.16$ mm⁻¹, 22309 reflexes (2 $\theta_{max} = 55^{\circ}$) measured on a Nonius Kappa-CCD diffractometer at 123(2) K using MoK_{α} radiation ($\lambda = 0.71073$ Å), 5252 unique [R_{int} = 0.074] used for structure solution (Direct Methods, SHELXS-97 [30]) and refinement (full-matrix least-squares on F^2 , SHELXL-97 [31]) with 295 parameters, empirical absorption correction from multiple reflections, H-atoms with a riding model, R1 ($I > 2\sigma(I) = 0.032$, wR2 = 0.063, largest diff. peak and hole 0.561 and -0.503 e Å⁻³.

8b: red crystals, $C_{23}H_{24}AsCoN_2O_3$, M = 466.3, crystal size 0.10 x 0.13 x 0.34 mm, monoclinic, space group $P2_1/c$ (No. 14): a = 8.2259(9) Å, b = 15.0722(16) Å, c = 19.7199(19) Å, $\beta = 101.76(1)^\circ$, V = 2393.6(4) Å³, Z = 4, ρ (calcd) = 1.42 Mg m⁻³, F(000) = 1040, $\mu = 2.11$ mm⁻¹, 11912 reflexes ($2 \theta_{max} = 50^\circ$) measured on a Nonius Kappa-CCD diffractometer at 223(2) K using MoKa radiation ($\lambda = 0.71073$ Å), 4175 unique [R_{int} = 0.079] used for structure solution (Direct Methods, SHELXS-97 [30]) and refinement (full-matrix least-squares on F^2 , SHELXL-97 [31]) with 277 parameters, analytical absorption correction, H-atoms refined free, R1 (I > 1000)

 $2\sigma(I)$ = 0.038, *wR2* = 0.071, largest diff. peak and hole 0.472 and -0.841 e Å⁻³.

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-258388 (4a), 258389 (4b), 258390 (7b), 258391 (8b). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge DB2 1EZ, UK (Fax: int.code+(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk).

References

- Reviews: (a) A. H. Cowley, R. Kemp, Chem. Rev. 1985, 85, 367. (b) M. Sanchez, M. R. Mazières, L. Lamandé, R. Wolf, Multiple Bonds and Low Coordination Chemistry in Phosphorus Chemistry, Regitz, M. Scherer O. (Eds.); Georg Thieme Verlag, Stuttgart, 1990, D1, pp. 129ff. (c) D. Gudat, Coord. Chem. Rev. 1997, 173, 71.
- [2] H. Nakazawa, Adv. Organomet. Chem. 2004, 50, 107.
- [3] (a) M. B. Abrams, B. L. Scott, R. T. Baker, Organometallics 2000, 19, 4944; (b) M. B. Abrams, N. J. Hardman, M. A. Pribisko, T. M. Gilbert, R. L. Martin, G. J. Kubas, R. T. Baker, Angew. Chem. 2004, 116, 1989; Angew. Chem. Int. Ed. Engl. 2004, 43, 1955.
- [4] C. Payastre, Y. Madaule, J. G. Wolf, *Tetrahedron Letters* 1990, 1145–1146.
- [5] C. Payastre, Y. Madaule, J. G. Wolf, T. C. Kim, M.-R. Mazières, R. Wolf, M. Sanchez, *Heteroatom Chemistry* 1992, *3*, 157–162.
- [6] (a) N. Burford, B. W. Royan, P. S. White, J. Am. Chem. Soc. 1989, 111, 3746-7; (b) N. Burford, T. M. Parks, B. W. Royan, B. Borecka, T. S. Cameron, J. F. Richardson, E. J. Gabe, R. Hynes, J. Am. Chem. Soc. 1992, 114, 8147-8153.
- [7] C. J. Carmalt, V. Lomeli, B. G. McBurnett, A. H. Cowley, *Chem. Commun.* 1997, 2095–2096.
- [8] (a) M. Veith, B. Bertsch, Z. Anorg. Allg. Chem. 1988, 557, 7;
 (b) M. Veith, B. Bertsch, V. Huch, Z. Anorg. Allg. Chem. 1988, 559, 73.
- [9] K. A. Porter, A. C. Willis, J. Zank, S. B. Wild, *Inorg. Chem.* 2002, 41, 6380–6386.
- [10] C. Payrastre, J. G. Wolf, T. C. Kim, M. Sanchez, Bull. Soc. Chim. Fr. 1992, 129, 157–160.
- [11] N. Burford, J. A. C. Clyburne, P. Losier, T. M. Parks, T. S. Cameron, J. F. Richardson, *Phosphorus Sulfur Silicon Rel. El.* 1994, 93-94, 301-304.
- [12] K. A. Mahmoud, A. J. Rest, M. Lukza, K. Jörg, W. Malisch, Organometallics 1984, 3, 501-503.
- [13] E = As: See e.g.: (a) E. W. Abel, S. R. Allen, P. A. Bates, M. B. Hursthouse, B. Khandelwal, *Chem. Commun.* 1987, 983–984; (b) E. W. Abel, S. R. Allen, B. Khandelwal, *J. Chem. Soc., Dalton. Trans.* 1989, 885–888; (c) L. Weber, L. Pumpenmeier, H.-G. Stammler, B. Neumann, *J. Chem. Soc., Dalton Trans.* 2004, 659.
- [14] E = Sb: See e.g.: A.-M. Caminade, M. Veith, V. Huch, W. Malisch, *Organometallics* 1990, *9*, 1798–1802; N. C. Norman, P. M. Webster, L. J. Farrugia, *J. Organomet. Chem.* 1992, *430*, 205; T. Groer, M. Scheer, *J. Chem. Soc., Dalton Trans.* 2000, 647.
- [15] D. Gudat, T. Gans-Eichler, M. Nieger, Chem. Commun. 2004, 2434–2435.

- [16] T. Gans-Eichler, D. Gudat, M. Nieger, manuscript submitted.
- [17] D. Gudat, A. Haghverdi, M. Nieger, J. Organomet. Chem. 2001, 617, 383-394.
- [18] Y. Yamaguchi, H. Nakazawa, T. Itoh, K. Miyoshi, Bull. Chem. Soc. Jpn. 1996, 69, 983.
- [19] D. Gudat, A. Haghverdi, H. Hupfer, M. Nieger, *Chem. Eur. J.* 2000, 6, 3414.
- [20] W. F. Edgell, J. Lyford, J. Am. Chem. Soc. 1971, 93, 6407-6414.
- [21] H. Lang, U. Eberle, M. Leise, L. Zsolnai, J. Organomet. Chem. 1996, 519, 137.
- [22] H. Lang, O. Orama, J. Organomet. Chem. 1989, 371, C48.
- [23] Result of a query in the CSD database
- [24] J. S. McIndoe, B. K. Nicholson, J. Organomet. Chem. 1999, 577, 181; D. Lei, M. J. Hampden-Smith, J. W. Garvey, J. C. Huffman, J. Chem. Soc., Dalton Trans. 1991, 2449;
- [25] F. Dahan Y. Jeannin, J. Organomet. Chem. 1977, 136, 251.
- [26] N. Burford, T. M. Parks, P. K. Bakshi, T. S. Cameron, Angew. Chem. 1994, 106, 1332–1334; Angew. Chem. Int. Ed. Engl. 1994, 33, 1267–1268.
- [27] A. D. Becke, J. Chem. Phys. 1993, 93, 5648.

- [28] Gaussian 98 (Rev. A.11), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- [29] NBO 5.0: E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, Theoretical Chemistry Institute, Univ. of Wisconsin, Madison, WI, 2001; http://www.chem.wisc.edu/~nbo5.
- [30] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
- [31] G. M. Sheldrick, Univ. Göttingen 1997.