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The enantioselective synthesis of acyclic all-carbon quater-
nary centers remains a significant challenge in organic
synthesis.[1] In view of the tremendous utility of enantiose-
lective aldol reactions in organic synthesis, extension of this
reaction to the enantioselective synthesis of all-carbon
quaternary centers from stereochemically defined tetrasub-
stituted enolates would be highly valuable.[2, 3] However,
attempts to generate such enolates or enolate equivalents
by deprotonation of acyclic carbonyl compounds in most
cases lead to geometric mixtures, which translates to poor
diastereoselectivity in the subsequent aldol reaction.[3, 4] Thus,
alternative methods for generation of acyclic tetrasubstituted
enolates or their synthetic equivalents have been devel-
oped.[5–8] Noteworthy among these, a highly stereoselective
carbocupration of chiral ynamides followed by oxidation of
the resultant vinylcuprate has been developed by Marek and
co-workers.[8] Nevertheless, the development of a simple,
highly stereocontrolled method for synthesis of stereochem-
ically defined tetrasubstituted enolates from readily available
achiral starting materials remains an important objective.
Toward this end, we report herein a simple procedure by
which stereodefined tetrasubstituted enolborinates are gen-
erated with exceptional stereoselectivity by 1,4-hydrobora-
tion reactions[9, 10] of unsaturated morpholine carboxamides
with (diisopinocampheyl)borane [(Ipc)2BH], and demon-
strate that the tetrasubstituted enolborinates undergo highly
enantio- and diastereoselective aldol reactions with repre-
sentative achiral aldehydes.

We recently reported that the 1,4-hydroboration of the
morpholine acrylamide 1 with (lIpc)2BH provides the enol-
borinate Z(O)-2 via TS-I (Scheme 1, where R2 = R3 = H).[11a]

Treatment of Z(O)-2 with aldehydes provided the syn-aldol
products 3 with exceptional diastereo- and enantioselectivity
(� 20:1 d.r. and 96–98% ee). By virtue of the transition state
TS-I proposed for the 1,4-hydroboration reaction,[9,12] we
anticipated that this procedure could be used to generate
stereodefined tetrasubstituted enolborinates (5) from substi-

tuted a,b-unsaturated amides (4). Subsequent aldol reactions
of 5 should faithfully relay the enolborinate geometry to the
all-carbon quaternary stereocenter in 6 via the transition state
TS-II.[2] To the best of our knowledge, stereodefined tetra-
substituted enolates have not been successfully generated
with high stereochemical control by using alternative reduc-
tive aldol procedures,[9, 10,12, 13] but several have been generated
by 1,4-addition of organometallic reagents to unsaturated
carbonyl derivatives.[5a,m,q,r,14]

We began by using the a-methylacryl carboxamide 7 as
the substrate to probe the effect of an a substituent on the 1,4-
hydroboration and the subsequent aldol reaction. Com-
pounds bearing a a,a-dimethyl-b-hydroxy quaternary center
are often generated by using Mukaiyama aldol methods.[15]

1,4-Hydroboration of 7 (1.1 equiv) with (dIpc)2BH (1 equiv)
in Et2O at ambient temperature for 3 hours with subsequent
addition of an aldehyde (0.85 equiv) and heating the reaction
mixture at 50 8C in sealed tube for 16 hours gave the aldol
products 9 (Scheme 2; see the Supporting Information for the
variables studied during the optimization of this reaction).
Results of the reductive aldol reactions of 7 with a range of
representative aldehydes are presented in Scheme 2. The
aldol reactions of the enolborinate 8 are more sluggish than
conventional aldol reactions of less substituted enolborinates
owing to the hindered nature of 8, and required heating at
reflux overnight. Nevertheless 9a–e were obtained in good
yield (66–84 %) and with excellent enantioselectivity (91-
96% ee). The absolute stereochemistry of the products 9 was

Scheme 1. 1,4-Reductive aldol reactions of substituted a,b-unsaturated
amides with (lIpc)2BH.
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assigned by using the Mosher method,[16] and is consistent
with product formation occurring via transition state TS-IV.
The aldol reaction proved to be sensitive to steric effects as 9b
and 9 c, derived from aliphatic aldehydes, were obtained in
lower yield than those from aromatic or unsaturated alde-
hydes, and products derived from a-branched aldehydes such
as cyclohexanecarboxaldehyde were obtained in much lower
yield (< 10%, not shown).[17]

Having established that a-substituted a,b-unsaturated
carboxamide substrates are compatible with this reductive
aldol procedure, we elected to study the 1,4-hydroboration
and aldol reactions of the a,b-dimethyl acrylamide 10 (tigloyl
carboxamide; Scheme 3). If both steps proceed with syntheti-
cally useful stereochemical control, the aldol adducts 12 with
an a-quarternary center bearing a methyl group syn and an
ethyl group anti to the b-hydroxy group would be obtained.
Thus, 1,4-hydroboration of the unsaturated amide 10 with
(lIpc)2BH (Et2O, 23 8C) with subsequent treatment of the
intermediate enolborinate Z(O)-11 with representative ali-
phatic and aromatic aldehydes provided the b-hydroxy
amides 12 (Scheme 3). The 1,4-hydroboration of 10 was
slower than that of 7 and was 80–90% complete after 3 hours
at 23 8C, as determined by 1H NMR analysis. Attempts to
push the hydroboration to completion by using longer
reaction times were not successful. This outcome led us to
decrease the amount of aldehyde used in the aldol step from
0.85 to 0.75 equivalents to compensate for the incomplete
hydroboration. Under these reaction conditions, the reductive
aldol reactions of 10 provided the products 12a–e in moderate
to good yields (40–90%). The least efficient aldol reaction of

those presented in Scheme 3 was that with hydrocinnamalde-
hyde, which gave 12b in 40% yield. However, synthetically
useful yields are obtained with a,b-unsaturated aldehydes
(12 a, 12 d), which can serve as surrogates for a saturated
aldehyde substrate. Gratifyingly, the products 12 with syn re-
lationships between the a-ethyl and the b-hydroxy groups
were obtained with high diastereoselectivity in all cases
(d.r.> 20:1), and excellent enantioselectivity (93–95 % ee).
The relative stereochemistry of 12a was assigned as described
in the Supporting Information, and absolute configurations of
12 were assigned by using the Mosher method.[16] Collectively,
these data indicate that the enolborinate 11 has Z(O)
stereochemistry, which is consistent with 1,4-hydroboration
of 10 via TS-V, and that the products 12 arise via the chairlike
transition state TS-VI.

Complementary aldol diastereoselectivity is achieved by
using the a-ethyl acrylamide 13 as the substrate for the 1,4-
hydroboration reaction (Scheme 4). Treatment of 13 with
(lIpc)2BH in Et2O at ambient temperature for 3 hours, with
subsequent addition of an aldehyde, and heating the resulting
mixture at 50 8C overnight provided the products 15 with high
diastereoselectivity (d.r.> 20:1) and excellent enantioselec-
tivity (92–95 % ee).

The products 15 so obtained have anti relationships
between the a-ethyl and b-hydroxy groups and are diaste-
reomers of 12, which in most cases were not detected by
1H NMR analysis of the crude reaction mixtures. These
results are consistent with the 1,4-hydroboration reaction of
13 proceeding via TS-VII to give the enolborinate E(O)-14
stereoselectively, and with the aldol reaction of E(O)-14

Scheme 2. Reductive aldol reactions of 7. Reactions were performed
with 0.25 mmol of (dIpc)2BH at a concentration of 0.25m. Yields of
isolated products are reported. Enantiomeric purity and absolute
configuration of the C(3)-hydroxy group was determined by Mosher
ester analysis.[16] [a] Reaction of 8 with cinnamaldehyde in Et2O at
reflux using a standard cooling system yielded 9a in similar efficiency
(83%, 92 % ee, performed on 1 mmol scale). DMTr= dimethoxytrityl,
THF = tetrahydrofuran.

Scheme 3. Reductive aldol reactions of 10. Reactions were performed
with 0.25 mmol of (lIpc)2BH at a concentration of 0.25m. Aldol
diastereomer ratios were determined by 1H NMR analysis of crude
reaction mixtures. Only 12 was usually observed. Yields of the isolated
products are reported. Enantiomeric purity and absolute configuration
of the C(3)-hydroxy group was determined by Mosher ester analysis.[16]

TMS= trimethylsilyl.
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occurring preferentially via the chairlike transition state TS-
VIII. The chemical efficiency of these sterically demanding
aldol reactions is acceptable (46–67%) with aromatic and
unsaturated aldehydes. The lower yields of 15 obtained from
13, compared to the better yields for the reductive aldol
reactions of 7 (Scheme 2) and 10 (Scheme 3) can be attributed
to a destabilizing syn-pentane interaction in TS-VIII between
the enolborinate equatorial ethyl substituent and the alde-
hyde “R1” substituent (R1CHO).[18]

The exceptional diastereoselectivity of these reactions is
remarkable, especially in view of the fact that enolborinates
are known to isomerize by reversible 1,3-shifts.[9b, 11b, 19] The
results presented demonstrate that the enolborinates Z(O)-11
(from 10, Scheme 3) and E(O)-14 (from 13, Scheme 4) are
configurationally stable and do not isomerize by reversible
formation of a C-boryl species (not shown), under the
reaction conditions of the hydroboration or the subsequent
aldol reactions. The kinetic stability of these enolborinates[20]

undoubtedly reflects the increase in nonbonded steric inter-
actions that must develop in the (unobserved) O-to-C 1,3-
boratropic isomerization reaction.

In summary, 1,4-hydroboration reactions of substituted
morpholine acrylamides with (diisopinocampheyl)borane
provide stereodefined tetrasubstituted enolborinates with
exceptional stereochemical control. As such, the results
presented here demonstate a simple solution to the stereo-
selective synthesis of tetrasubstituted enolates, which are not
accessible with synthetically useful stereoselectivity by using
conventional enolate-forming reactions.[5]

Aldol reactions of 8 (deriving from 7) with a panel of
representative aldehydes provided a,a-dimethyl-b-hydroxy
carboxamides 9 with excellent enantioselectivity (91–96 % ee,
Scheme 2). The syn and anti a-methyl-a-ethyl-b-hydroxy
amides 12 and 15, respectively, are obtained with excellent
diastereoselectivity (d.r.> 20:1) and high enantioselectivity
(92 to > 95% ee) from the corresponding acrylamides 10 and
13 (Scheme 3 and 4). Morpholine carboxamides are known to
have reactivity analogous to Weinreb amides and are valuable
intermediates for a variety of subsequent synthetically useful
transformations.[11a] Thus, this simple and experimentally
convenient procedure for synthesis of tetrasubstituted enol-
borinates by highly stereoselective 1,4-hydroboration of
unsaturated morpholine carboxamides and subsequent aldol
reactions provide a useful, new method for stereocontrolled
synthesis of all-carbon quaternary stereocenters.

Experimental Section
Acryloylmorpholine derivative 7, 10, or 13 (0.275 mmol) was added to
a room temperature suspension of (d or lIpc)2BH (weighed in the
glovebox, 72 mg, 0.25 mmol, and then crushed into a fine powder) in
Et2O (1.0 mL). The solution was stirred for 3 h [at which point all of
the (Ipc)2BH had dissolved] and then aldehyde (0.213 mmol) was
added. The solution was heated at 50 8C in a sealed tube overnight and
then was allowed to cool to room temperature. An aqueous pH 7
buffer solution (0.5 mL), MeOH (0.5 mL) and THF (0.5 mL) were
added and the reaction was stirred for 6 h at room temperature. The
aqueous phase was extracted with CH2Cl2 (3 � 10 mL). The combined
organic extracts were washed with brine, dried over Na2SO4, filtered,
and concentrated under reduced pressure. Purification of the crude
product by flash chromatography (CH2Cl2/ethyl acetate, 1:1) pro-
vided the aldol adducts 9, 12, or 15.
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