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1. Introduction

The Kéhler case of Riemannian homogeneous structures [3, 15, 18] has been
studied in [1, 2, 6, 7, 13, 16], among other papers. Abbena and Garbiero [1] gave a
classification of Kéhler homogeneous structures, which has four primitive classes
His ..., K, (see [6, theorem 5:1] for another proof and Section 2 below for the result).
The purpose of the present paper is to prove the following result:

TaEOREM 1-1. A simply connected irreducible homogeneous Kdhler manifold admits
a nonvanishing Kdhler homogeneous structure in Abbena—Garbiero’s class Ay @ A, if
and only if it is the complex hyperbolic space equipped with the Bergman metric of
negative constant holomorphic sectional curvature.

We thus have a situation similar to the Riemannian case, where a connected,
simply connected and complete Riemannian manifold admits a non-vanishing
homogeneous structure of first class if and only if it is isometric to the hyperbolic
space (|18, theorem 5-2]), and similarly we obtain a vector field & (see (4:4) in Section
4) which is the complex analogue of the vector field in the Riemannian case satisfying
Vié=9gX,§)E—g(. £)X, (8, 18]), for Riemannian homogeneous structures of first
class and models of negative constant (ordinary) sectional curvature. Moreover, this
suggests the possibility of a quaternionic analogue to Theorem 1-1 for models of
negative constant quaternionic sectional curvature and also of a Cayleyan analogue.

On the other hand, similarly to the Riemannian case [18, p. 55], one has a solvable
group acting simply transitively on the relevant domain (see Remark 4-2(i)), thus
explaining why positive (holomorphic sectional) curvature is not detected.

2. Preliminaries and notations

As is well known, Ambrose and Singer proved in [3] that a connected, simply
connected and complete Riemannian manifold (M,g) is homogeneous if and only if it
admits a Riemannian homogeneous structure, i.e. a (1,2) tensor field S satisfying

Vg=0, VR=0, VS=0, (21
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where V = V-8, V denotes the Levi-Civita connection and R the curvature tensor
of V. We write Syy, = ¢(Sy Y, Z). Then, from Vg = 0 it follows that the condition
Vg = 0 is equivalent to Sy, = =Sy, We set

Ryy 7 = V\X,Y|Z_VX VyZ+Vy Vi Z, RXYZW =g(RxyZ, W),
Ryy(ZW)=Ryyyw. X.Y.Z,WeZ(M).

In the sequel X,Y,Z, W, U, § &, will stand for vector fields on a ¢ manifold M.
We denote by F the Kéhler form, defined by F(X,Y) = ¢(X,JY), by r the Ricci
tensor and by s the scalar curvature.

Sekigawa [17] proved that a connected, simply connected and complete almost
Hermitian manifold (M,g,J) is homogeneous if and only if it admits an almost
Hermitian homogeneous structure, i.e. a (1,2) tensor field S satisfying the conditions
(2:1) and V.J = 0.

We further suppose that (M, g,.J) is Kéhler, so V.J = 0. As V.J = 0, the condition
VJ =0 is equivalent to Sy ;y;, =Syy, Hence, if S is an almost Hermitian
homogeneous structure satisfying that invariance condition, then the manifold is
Kaéhler ([1, theorem 5-8]). This property is equivalent to saying that S belongs to the
vector space

SV ={8e@°V*:Syy,=—Sxzv =Sxuvizh

Definition 2-1. A Kdhler homogeneous structure on a Kidhler manifold (M, g, J) is an
almost Hermitian homogeneous structure S on M such that S,e % (T, M), for all
reM.

The classification of Kéhler homogeneous structures was obtained by Abbena and
Garbiero in [1, theorem 2-1]. We recall their result here: let V be a 2n-dimensional
real vector space (which is the model for the tangent space at any point of a manifold
equipped with a Kédhler homogeneous structure) endowed with a complex structure
J and a Hermitian inner product {,), thatis, J? = —1, {JX, JY) =<X, YV), X, YeV,
where / denotes the identity isomorphism of V.

If dimV =6, (V). decomposes into the direct sum of the following subspaces
mvariant and irreducible under the action of the group U(n):

9{1 = l‘gey(V)Jr:SXYZ = %(Syzx'i'szxy+SJYJZ)(+SJZXJY)7 012(‘9) = 0};
Hy ={SeS (V) Sxy, =X, Y 0,(Z)—<X, Z)0,(Y)+<{X,JY) 0,(JZ)
—X,JZ0,(JY)—2{JY,Z)0,(JX), 0, V*};
Hy=8eS (V) :Sxy,= =308y 2x T 82xv + 8y szx T 8szx sv)s €12(S) = 0};
Hy ={SeS (V) Sxy, =X, Y 0,(Z) <X, Z) 0,(Y)+ <X, JY) 0,(JZ)
—X,JZ0,(JY)+2{JY, Z) 0,(JX), 0, V*};
X,Y,ZeV, where c,, is defined by ¢,,(S) (X) = £, S, , x, for any XeV, {e;,....e,,}

denotes an arbitrary orthonormal basis of I and

1 1

mcm(s) (X)), HQ(X)ZWCH(S) X), Xel.

If dim V =4, then (V). = A, ® A, ® A,. If dim V = 2, then L (V). = A,.
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3. The class A, ® A,
We can write the class 2, @ 4, as
Ho® Ay = (SeS (V). :Syy, = XY (0,+0,) (Z)
_<X7Z> (61+62) (Y)+<X7JY> (01+02) (JZ)
— (X, TZY Oy +0,) (TY) + 2V, T 5 (0, — 0,) (JX)}. (3:1)
Remark 3:1. We recall that 4, @ 4, is the sum of the isotypic components 4, 4,
of the smallest dimension in the decomposition of & (V), above. In fact, one has
Hy, = A, = V= TV* and the respective dimensions of 4/, ..., %, are (see [1, p. 382])
n(n+1)(n—2),2n, n(n—1) (n+2), 2n. It is thus reasonable that %, @ A, corresponds
to spaces of (negative) constant holomorphic sectional curvature, which are scarce in
all homogeneous Kéihler spaces.

Lemma 3-2. 4 simply connected complete irreducible Kéihler manifold (M = G/H.g,.J)
of real dimension 2n = 4 which admits a nonvanishing Kéhler homogeneous structure
Sed, ® A,, is Kinstein.

Proof. Let £ be the vector field dual to the 1-form 0 = 0,40, and { the vector field
dual to the 1-form 0, —0,, both with respect to the metric. From (3-1) we have
SxV=g(X. V)E—g(Y. ) X —g(X.JY) JE+g(JY. £) JX =29(JX. () JY. (32
Taking the V,, derivative of this formula, applying Ambrose—Singer’s equations (2-1)
and Sekigawa’s equation VJ = 0 and contracting with g(W, -), we obtain
g Y) gV, & W) —g(V, £ 1) g(X. W) —g(X. JY) g(V, JE W)
+g(V,EIY)g(IX. W) =29(JX.V, ) g(JY. W) = 0.
Since dim M > 4, we deduce N N
VE=0, V{=0. (3:3)

Thus, from Vg = 0 we have g(£ &) = const, g(£, £) = const. If £=0, {+ 0, we also
have

Ryy = 49X, JE)g(Y,{)—g(X. O)g(Y,JL)) JE. (34)

The second Ambrose—Singer condition in (2:1) can be written as

(VxR)yzwu = =B vawo—Byszwo—Byzs,wo—Byzws o (3:5)
Suppose £ # 0. Applying Bianchi’s second identity to (3-5) and then substituting
(3-2), we obtain
Cxyvz 20X, &) Ry 4y +9(X, W)Ryzg(f‘i‘.(](Xy U)Ryzwg_Qg(Xs e]Y)R.ngwv
—g9(X, JW)RYZJgU_g(X> JU)RYZWJg} =0. (36)

Contracting (3-6) with respect to X and W and applying Bianchi’s first identity, we
deduce

(2042) Ry = —29(Y, ) (2, U)+ 292, ) (Y. U)
+29(Y,JZ)r(JEU)—g(Y, U)r(Z,E)+g9(Y, JU) r(Z,JE)
+g(Z7 LT) V(Yg)_g(ZJLY) T(Yr Jg) (37)



90 P. M. GApEA, A. MONTESINOS AND J. M. MASQUE’
Contracting (3:7) with regard to Y and U, we obtain »(Z,§) = (s/2n)g(Z, §). Putting
a=1/2n+2), b =s/2n, we can write (3:7) as

éRw = 20 A r(U) 4 260(JUY F +bU° A O+b(JUY A (Go.]). (3:8)

On the other hand, from Bianchi’s first identity one has Ry ,(JE, )=
Reyw(U, ) —Re;y(W, -). Thus we can write (3:6) as

20 ARy + WP AR, —UP ARy +2F AN (R (W, ) =Ry (U, -))
+ (WP ARy —(JUP ARy = 0. (3:9)
Substituting (3-8) in (3-9) and denoting by Z(U) the right hand side of (3-8), we deduce

%9 AR+ W AS(U)— U0 AZ(W) +2F A (i (E(JU)) —i (BT W)))

+ (WY AEJU)—(JUY AZJIW) =0. (3:10)
Taking W = £ in this formula we obtain
(298, E)F+ON(O0J))A(r(JU)—b(JU)) = 0.
Jontracting this formula with £, in account of »(§, -) = bg(§, -) we deduce
g £) (0o ) A (r(JU)=b(JU)) =0
Contracting with J£ we have ¢(£, &) (r(JU)—b(JU)’) = 0. Since £ & 0 we conclude
that » = bg, that is (M,g,.J) is Einstein.

Now suppose § = 0, + 0. It is immediate to see that |{, J¢| = —2¢(¢, {) J¢, so that
M has a 2-dimensional involutive distribution, which is also parallel as follows from
(3-2) and V¢ = 0 in (3:3). Thus (|5, proposition 10-21]) the holonomy representation
Hol (g) leaves invariant a subspace of dimension 2. So, by the De Rham theorem (|5,

theorem 10-41]), we conclude that M is holomorphically isometric to a Ké&hler
product, but then M would not be irreducible.

THEOREM 3:3. A simply connected irreducible homogeneous Kdihler manifold of real
dimension 2n = 4 admitting a nonvanishing Kdhler homogeneous structure Se A, ® A,
s holomorphically isometric to a bounded symmetric domain of negative constant
holomorphic sectional curvature.

Proof. Suppose £ # 0. Since by the Lemma the manifold is Einstein (3-10) gives us
1
7N (%BWDA- U AWP 4 (JUY A (JW) —2F (W, U)F) =0. (3-11)

Contracting this formula with £ we deduce, as k = ¢g(£,§).

%RWU— k(W2 AU+ (JW) A (JUY +2F(W, U)F) = 0 A (%

FO(U) W —O(W) U+ 6(JU) (JW) — O W) (JUY —2F (W, U) (6o J)) L (312)

Ry (&)

On the other hand, from Bianchi’s first identity we deduce Ry (&, )=
Rey(W, ") =Ry (U, -). Substituting these two summands by their expression
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from (3:8) and then substituting the expression for Ry,(§, ) in (3-12) we
obtain

1

By = WA (WP A JUP+2F (. U)F.

from which

S i N , ) ,
By swo = ooy 0 N D =g (V) g2 W)+ 9. T W) (2. U)
—g(Y,JU)Yg(Z, IW)+29(Y, JZ) g(W, JU)}.

That is, (M,g,J) is a model of constant holomorphic sectional curvature
c=s/n(n+1). To determine the sign of s, we prove that (for £=0 or not) if
(M,g,J) is a space of constant holomorphic sectional curvature ¢, then { =0 and
c=—g(§ £&). In fact, comparing the expressions for Ry ;& respectively obtained
from substitution in the usual expression

RyyZ =g X, Z)Y—g(Y,2) X +9(JX, Z2)JY —q(JY,Z) JX +29(X.JY) JZ}
and from V£ = S, £, since n > 2 we obtain the system of equations

gX,£)g(JX. L) —g(JX. &) g(X.{) = 0, (313)
cg(X.§) = —g(&.8§)gX.£-0). (3-14)
0=(29(£.0)—9(£.£)—0)g(X. X)+9(X.£)g(X.{)
+9(JX. §)g(JX. {)—29(X. {)* = 2¢(JX. )% (3:15)
From (3-14) we have ¢(§,£)¢ = (9(£. &) +c¢) & which, if it is true, implies (3:13). In
(3-15) we can take X orthogonal to ¢ and J¢ so ¢g(£.&)+c=2¢(. ), thus
9(8.8) (9(&. ) +¢) = 29(£.9(£.£) £) = 29(£.£) (9(£. &) +¢). hence
9(€.£) (9(&. &) +¢) = 0. (3-16)
Suppose g(£,£) = 0. As £ = 0, (3-15) simplifies to
cg(X, X)+29(X,8)*+29(JX,{)* = 0.
Since dim M > 4, we can take X orthogonal to { and to J¢, so cg(X, X) = 0, that is,
the manifold is flat. From (3-4) we deduce
9(X, 8)g(JY. ) —g(Y,E)g(JX. {) = 0.

Taking X = ¢ we have ¢({,{){ = 0, which implies { = 0, but then S vanishes.
On the other hand, if ¢(§,£) % 0, then (3:16) gives ¢(§,£)+¢ = 0; hence { = 0.
The case £ = 0, { # 0 has been already discarded in the previous lemma.

Remark 3-4. In the conditions of Lemma 3-2, for £ = 0, { # 0, substituting (3-2) in
(3-5), as VJ = 0 we have
(VxB)y zwo = 20(JX, ) (Byy zwo+ By jzwo + By 7w+ By 2w y0) = 0.

Thus (M,g,J) is Hermitian symmetric. As we have seen, it is holomorphically
isometric to a Kéhler product, with a 2-dimensional factor, which is a space of
negative constant curvature —4g¢(¢, {), as it follows from (3-4).
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Now, there are (|10, pp. 518— 520]) four non- ﬂat non- compact Hermitian symmetric
surfaces: SU(1,1)/S(U(1) x U(1)), SO*(4)/U(2), SO,(2,1)/SO(2) x 1 and Sp(1)/U(1)
All of them are isomorphic and can be 1dent1ﬁed to the real hyperbolic space
S0,(2,1)/S0(2) x 1. Taking the half-plane Poincaré model H = {z = a +iyeC:y > 0}
for lt, we hdve the metric and the complex structure (particular cases of (42) and
(4:3) below)

da® + dy? 0 0
g = —TJZ, J=@®dx—%®dy.

It is immediate that the vector field { = —(cy/2)0/0y (a particular case of (4-4)
below) satisfies the equation V. { = 2¢(X, J{) J¢, V being the Levi—Civita connection
of g. We conclude that in the simply connected reducible case one can also consider
spaces holomorphically isometric to products of the 2-dimensional Siegel domain
model of the complex hyperbolic space, that is, the above half-plane Poincaré model,
equipped with the Kédhler homogeneous structure S given by S, Y = 2¢(X,J{)JY,
and any other Hermitian symmetric space, endowed with its standard vanishing
Kéhler homogeneous structure as a Hermitian symmetric space.

4. Proof of Theorem 1-1

As for the converse, it suffices to give a non-vanishing Kéhler homogeneous
structure on any model of negative constant holomorphic sectional curvature. Thus,
to finish the proof we explicitly give such a structure on the Siegel domain

n
D, = {(z =x+iy,ut, ..., u")eC" iy — > uFut > 0},
k=1

equipped with the Kéhler structure obtained by a convenient Cayley transform (|14,
p- 5]) from that of the unit open ball in C"*! ([9, p. 227] or [12, p. 169], changing the
sign in the second summand of the numerator in the last expression of the metric).
A calculation shows that

1
= s
+ 2i(dz X uFdu® — dz Y, uPdu®) + 43 wFdu®) (X utda®)}.

{dzdz+ 4(y — X2 w*u®) > du® du®

D,,q.,J,) is a Kédhler manifold, with

J, = ( ®dz+2—®d k—®dz—2®du>

oy Ou®

The Riemannian manifold (D, ¢, ) is homogeneous, hence complete. Since (D, ,g,, /)
is connected, simply connected and complete, it is a model of negative constant
holomorphic sectional curvature. Furthermore, we seek for a homogeneous structure
S of the type

Sy V=g, YV)E—g(E. V)X —g(X.JY) JE+g(E, JY) JX
Since ?g = 0, we must find a vector field § on D, satisfying
Vi =9X.£)E—g(€ &) X—g(X, JE) JE. (4-1)
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Putting u* = ¥+ iw*, the metric g, and the complex structure .J, are written as

1 2 2 — 72 )2
_c[y—E((@k)u(wzc)z)]z{d% +dy* +4ly Ek((v )2+ (w)?)]

X 2 ((dv®)? + (dw®)?) — 4[dx Y (wFhdv® — v dw®) — dy Y (vFdo® + whdw®) ]
+8 X [(WF! + whwt) (dv*dv + dwPduwt) + (v'uw® — v*w') (doFdw' — dw*dv?)]},  (4:2)
k.l

9+ =

_9 _9 0 i — @ dut .
J+—a—y®dx ax®dy+2<awk®dv 8vk®dw>' (4-3)

A long but straightforward computation shows that the vector field

0

E=—5u—% u’“ﬁ’c)@ (4-4)

¢
2
satisfies (4-1) for all X. Specifically, if X is given by

0 0 0 0
X=af 4 p it S (ras o)

we obtain

_cf. kg L Frul) S
VX§—4{2[(OC+Z(8” Vi) TR v Oy )5?/]

0 0
+E(7kﬁ+3kw)}-

Hence, (D_,g,,J,) admits the K&hler homogeneous structure § given by

LY = =S kg N9 (2

0 0
+9X,JY)—+g| 5. JY|JX . (4:5)
Ox dy
According to Heintze’s Theorem ([11, theorem 4]), a connected homogeneous
Kéhler manifold of negative curvature is holomorphically isometric to the complex
hyperbolic space. Hence

COROLLARY 4:1. A connected homogeneous Kdhler manifold of real dimension 2n = 4
and negative curvature admits a nonvanishing Kdhler homogeneous structure

Set,® A,

Remark 4-2. (i) The Siegel domain D, thus admits at least two Kédhler homogeneous
structures: S =0, as D, is a realization of the noncompact Hermitian symmetric
space U(1,n)/U(1) x U(n); and the non-vanishing structure § in (4-5), corresponding
to the fact that the solvable group CH" (see [11, p. 33]) acts simply transitively on
D, (see [11, p. 32], [5, p. 181], [4, p. 92]) by holomorphic isometries. Hence, we can
identify D, with CH" and thus it is immediate to obtain the expression of the
canonical connection on the reductive homogeneous space (D,,g,,./J,) identified to
the solvable group CH".
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(if) For dim M = 2 only the class #, remains. This case has been studied by Abbena
and Garbiero [1, p. 391].
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