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1. Introduction

The Ka$ hler case of Riemannian homogeneous structures [3, 15, 18] has been

studied in [1, 2, 6, 7, 13, 16], among other papers. Abbena and Garbiero [1] gave a

classification of Ka$ hler homogeneous structures, which has four primitive classes

+
"
,… ,+

%
(see [6, theorem 5±1] for another proof and Section 2 below for the result).

The purpose of the present paper is to prove the following result :

T 1±1. A simply connected irreducible homogeneous KaX hler manifold admits

a nonvanishing KaX hler homogeneous structure in Abbena–Garbiero’s class +
#
G+

%
if

and only if it is the complex hyperbolic space equipped with the Bergman metric of

negative constant holomorphic sectional curvature.

We thus have a situation similar to the Riemannian case, where a connected,

simply connected and complete Riemannian manifold admits a non-vanishing

homogeneous structure of first class if and only if it is isometric to the hyperbolic

space ([18, theorem 5±2]), and similarly we obtain a vector field ξ (see (4±4) in Section

4) which is the complex analogue of the vector field in the Riemannian case satisfying

~
X

ξ¯ g(X, ξ ) ξ®g(ξ, ξ )X, ([8, 18]), for Riemannian homogeneous structures of first

class and models of negative constant (ordinary) sectional curvature. Moreover, this

suggests the possibility of a quaternionic analogue to Theorem 1±1 for models of

negative constant quaternionic sectional curvature and also of a Cayleyan analogue.

On the other hand, similarly to the Riemannian case [18, p. 55], one has a solvable

group acting simply transitively on the relevant domain (see Remark 4±2(i)), thus

explaining why positive (holomorphic sectional) curvature is not detected.

2. Preliminaries and notations

As is well known, Ambrose and Singer proved in [3] that a connected, simply

connected and complete Riemannian manifold (M, g) is homogeneous if and only if it

admits a Riemannian homogeneous structure, i.e. a (1, 2) tensor field S satisfying

~h g¯ 0, ~h R¯ 0, ~h S¯ 0, (2±1)

† Partially supported by the DGES (Spain) : P.M.G. and J.M.M. under Project PB-95-0124 and
A.M.A. under Project PB-94-0972.
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where ~h ¯~®S, ~ denotes the Levi–Civita connection and R the curvature tensor

of ~. We write S
XYZ

¯ g(S
X

Y,Z). Then, from ~g¯ 0 it follows that the condition

~h g¯ 0 is equivalent to S
XZY

¯®S
XYZ

. We set

R
XY

Z¯~rX,Yr Z®~
X

~
Y

Z~
Y

~
X

Z, R
XYZW

¯ g(R
XY

Z,W),

R
XY

(Z,W)¯R
XYZW

, X,Y,Z,W `8(M).

In the sequel X,Y,Z,W,U, ξ, ζ, will stand for vector fields on a C¢ manifold M.

We denote by F the Ka$ hler form, defined by F(X,Y)¯ g(X,JY), by r the Ricci

tensor and by s the scalar curvature.

Sekigawa [17] proved that a connected, simply connected and complete almost

Hermitian manifold (M, g,J) is homogeneous if and only if it admits an almost

Hermitian homogeneous structure, i.e. a (1, 2) tensor field S satisfying the conditions

(2±1) and ~h J¯ 0.

We further suppose that (M, g,J) is Ka$ hler, so ~J¯ 0. As ~h J¯ 0, the condition

~J¯ 0 is equivalent to S
XJYJZ

¯S
XYZ

. Hence, if S is an almost Hermitian

homogeneous structure satisfying that invariance condition, then the manifold is

Ka$ hler ([1, theorem 5±8]). This property is equivalent to saying that S belongs to the

vector space

3(V)
+
¯²S `C$V*:S

XYZ
¯®S

XZY
¯S

XJYJZ
´.

Definition 2±1. A KaX hler homogeneous structure on a Ka$ hler manifold (M, g,J) is an

almost Hermitian homogeneous structure S on M such that S
x
`3(T

x
M)

+
for all

x `M.

The classification of Ka$ hler homogeneous structures was obtained by Abbena and

Garbiero in [1, theorem 2±1]. We recall their result here: let V be a 2n-dimensional

real vector space (which is the model for the tangent space at any point of a manifold

equipped with a Ka$ hler homogeneous structure) endowed with a complex structure

J and a Hermitian inner product ©,ª, that is, J#¯®I, ©JX,JYª¯©X,Yª, X,Y `V,

where I denotes the identity isomorphism of V.

If dimV& 6, 3(V)
+

decomposes into the direct sum of the following subspaces

invariant and irreducible under the action of the group U(n) :

+
"
¯²S `3(V)

+
:S

XYZ
¯ "

#
(S

YZX
S

ZXY
S

JYJZX
S

JZXJY
), c

"#
(S)¯ 0´ ;

+
#
¯²S `3(V)

+
:S

XYZ
¯©X,Yª θ

"
(Z)®©X,Zª θ

"
(Y)©X,JYª θ

"
(JZ)

®©X,JZª θ
"
(JY)®2©JY,Zª θ

"
(JX), θ

"
`V*´ ;

+
$
¯²S `3(V)

+
:S

XYZ
¯®"

#
(S

YZX
S

ZXY
S

JYJZX
S

JZXJY
), c

"#
(S)¯ 0´ ;

+
%
¯²S `3(V)

+
:S

XYZ
¯©X,Yª θ

#
(Z)®©X,Zª θ

#
(Y)©X,JYª θ

#
(JZ)

®©X,JZª θ
#
(JY)2©JY,Zª θ

#
(JX), θ

#
`V*´ ;

X,Y,Z `V, where c
"#

is defined by c
"#

(S) (X)¯Σ#n
i="

S
ei ei,X

, for any X `V, ²e
"
,… , e

#n
´

denotes an arbitrary orthonormal basis of V and

θ
"
(X)¯

1

2(n®1)
c
"#

(S) (X), θ
#
(X)¯

1

2(n1)
c
"#

(S) (X), X `V.

If dimV¯ 4, then 3(V)
+
¯+

#
G+

$
G+

%
. If dimV¯ 2, then 3(V)

+
¯+

%
.
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3. The class +
#
G+

%

We can write the class +
#
G+

%
as

+
#
G+

%
¯²S `3(V)

+
:S

XYZ
¯©X,Yª (θ

"
θ

#
) (Z)

®©X,Zª (θ
"
θ

#
) (Y)©X,JYª (θ

"
θ

#
) (JZ)

®©X,JZª (θ
"
θ

#
) (JY)2©Y,JZª (θ

"
®θ

#
) (JX)´. (3±1)

Remark 3±1. We recall that +
#
G+

%
is the sum of the isotypic components +

#
,+

%

of the smallest dimension in the decomposition of 3(V)
+

above. In fact, one has

+
#
F+

%
FVFV* and the respective dimensions of +

"
,… ,+

%
are (see [1, p. 382])

n(n1) (n®2), 2n,n(n®1) (n2), 2n. It is thus reasonable that +
#
G+

%
corresponds

to spaces of (negative) constant holomorphic sectional curvature, which are scarce in

all homogeneous Ka$ hler spaces.

L 3±2. A simply connected complete irreducible KaX hler manifold (M¯G}H, g,J)

of real dimension 2n& 4 which admits a nonvanishing KaX hler homogeneous structure

S `+
#
G+

%
, is Einstein.

Proof. Let ξ be the vector field dual to the 1-form θ¯ θ
"
θ

#
and ζ the vector field

dual to the 1-form θ
"
®θ

#
, both with respect to the metric. From (3±1) we have

S
X

Y¯ g(X,Y) ξ®g(Y, ξ )X®g(X,JY)Jξg(JY, ξ )JX®2g(JX, ζ )JY. (3±2)

Taking the ~h
Z

derivative of this formula, applying Ambrose–Singer’s equations (2±1)

and Sekigawa’s equation ~h J¯ 0 and contracting with g(W, [), we obtain

g(X,Y) g(~h
Z
ξ,W)®g(~h

Z
ξ,Y) g(X,W)®g(X,JY) g(~h

Z
Jξ,W)

g(~h
Z
ξ,JY) g(JX,W)®2g(JX,~h

Z
ζ ) g(JY,W)¯ 0.

Since dimM& 4, we deduce

~h ξ¯ 0, ~h ζ¯ 0. (3±3)

Thus, from ~h g¯ 0 we have g(ξ, ξ )¯ const, g(ζ, ζ )¯ const. If ξ¯ 0, ζ1 0, we also

have

R
XY

ζ¯ 4(g(X,Jζ ) g(Y, ζ )®g(X, ζ ) g(Y,Jζ ))Jζ. (3±4)

The second Ambrose–Singer condition in (2±1) can be written as

(~
X

R)
YZWU

¯®R
SXYZWU

®R
YSXZWU

®R
YZSXWU

®R
YZWSXU

. (3±5)

Suppose ξ1 0. Applying Bianchi’s second identity to (3±5) and then substituting

(3±2), we obtain

3
XYZ

²2g(X, ξ )R
YZWU

g(X,W)R
YZξU

g(X,U)R
YZWξ®2g(X,JY)R

JξZWU

®g(X,JW)R
YZJξU

®g(X,JU)R
YZWJξ´¯ 0. (3±6)

Contracting (3±6) with respect to X and W and applying Bianchi’s first identity, we

deduce

(2n2)R
ZYξU

¯®2g(Y, ξ ) r(Z,U)2g(Z, ξ ) r(Y,U)

2g(Y,JZ) r(Jξ,U)®g(Y,U) r(Z, ξ )g(Y,JU) r(Z,Jξ )

g(Z,U) r(Y, ξ )®g(Z,JU) r(Y,Jξ ). (3±7)
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Contracting (3±7) with regard to Y and U, we obtain r(Z, ξ )¯ (s}2n) g(Z, ξ ). Putting

a¯ 1}(2n2), b¯ s}2n, we can write (3±7) as

1

a
RξU

¯ 2θgr(U)2bθ(JU)FbU]gθb(JU)]g(θ aJ). (3±8)

On the other hand, from Bianchi’s first identity one has R
WU

(Jξ, [)¯
RξJW

(U, [)®RξJU
(W, [). Thus we can write (3±6) as

2θgR
WU

W]gRξU
®U]gRξW

2Fg(RξJU
(W, [)®RξJW

(U, [))

(JW)]gRξJU
®(JU)]gRξJW

¯ 0. (3±9)

Substituting (3±8) in (3±9) and denoting by Ξ(U) the right hand side of (3±8), we deduce

2

α
θgR

WU
W]gΞ(U)®U]gΞ(W)2Fg(i

W
(Ξ(JU))®i

U
(Ξ(JW)))

(JW)]gΞ(JU)®(JU)]gΞ(JW)¯ 0. (3±10)

Taking W¯ ξ in this formula we obtain

(2g(ξ, ξ )Fθg(θ aJ))g(r(JU)®b(JU)])¯ 0.

Contracting this formula with ξ, in account of r(ξ, [)¯ bg(ξ, [) we deduce

g(ξ, ξ ) (θ aJ)g(r(JU)®b(JU)])¯ 0.

Contracting with Jξ we have g(ξ, ξ )# (r(JU)®b(JU)])¯ 0. Since ξ1 0 we conclude

that r¯ bg, that is (M, g,J) is Einstein.

Now suppose ξ¯ 0, ζ1 0. It is immediate to see that rζ,Jζr¯®2g(ζ, ζ )Jζ, so that

M has a 2-dimensional involutive distribution, which is also parallel as follows from

(3±2) and ~h ζ¯ 0 in (3±3). Thus ([5, proposition 10±21]) the holonomy representation

Hol (g) leaves invariant a subspace of dimension 2. So, by the De Rham theorem ([5,

theorem 10±41]), we conclude that M is holomorphically isometric to a Ka$ hler

product, but then M would not be irreducible.

T 3±3. A simply connected irreducible homogeneous KaX hler manifold of real

dimension 2n& 4 admitting a nonvanishing KaX hler homogeneous structure S `+
#
G+

%

is holomorphically isometric to a bounded symmetric domain of negative constant

holomorphic sectional curvature.

Proof. Suppose ξ1 0. Since by the Lemma the manifold is Einstein (3±10) gives us

θg0 1

ab
R

WU
U]gW](JU)]g(JW)]®2F(W,U)F1¯ 0. (3±11)

Contracting this formula with ξ we deduce, as k¯ g(ξ, ξ ),

k

ab
R

WU
®k(W]gU](JW)]g(JU)]2F(W,U)F)¯ θg0 1

ab
R

WU
(ξ, [)

θ(U)W]®θ(W)U]θ(JU) (JW)]®θ(JW) (JU)]®2F(W,U) (θ aJ)1 . (3±12)

On the other hand, from Bianchi’s first identity we deduce R
WU

(ξ, [)¯
RξU

(W, [)®RξW
(U, [). Substituting these two summands by their expression
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from (3±8) and then substituting the expression for R
WU

(ξ, [) in (3±12) we

obtain

1

ab
R

WU
¯W]gU](JW)]g(JU)]2F(W,U)F,

from which

R
YZWU

¯
s

4n(n1)
²g(Y,W) g(Z,U)®g(Y,U) g(Z,W)g(Y,JW) g(Z,JU)

®g(Y,JU) g(Z,JW)2g(Y,JZ) g(W,JU)´.

That is, (M, g,J) is a model of constant holomorphic sectional curvature

c¯ s}n(n1). To determine the sign of s, we prove that (for ξ¯ 0 or not) if

(M, g,J) is a space of constant holomorphic sectional curvature c, then ζ¯ 0 and

c¯®g(ξ, ξ ). In fact, comparing the expressions for R
XJX

ξ respectively obtained

from substitution in the usual expression

R
XY

Z¯ c²g(X,Z)Y®g(Y,Z)Xg(JX,Z)JY®g(JY,Z)JX2g(X,JY)JZ´

and from ~
X

ξ¯S
X

ξ, since n& 2 we obtain the system of equations

g(X, ξ ) g(JX, ζ )®g(JX, ξ ) g(X, ζ )¯ 0, (3±13)

cg(X, ξ )¯®g(ξ, ξ ) g(X, ξ®ζ ), (3±14)

0¯ (2g(ξ, ζ )®g(ξ, ξ )®c) g(X,X)g(X, ξ ) g(X, ζ )

g(JX, ξ ) g(JX, ζ )®2g(X, ζ )#®2g(JX, ζ )#. (3±15)

From (3±14) we have g(ξ, ξ ) ζ¯ (g(ξ, ξ )c) ξ which, if it is true, implies (3±13). In

(3±15) we can take X orthogonal to ζ and Jζ, so g(ξ, ξ )c¯ 2g(ξ, ζ ), thus

g(ξ, ξ ) (g(ξ, ξ )c)¯ 2g(ξ, g(ξ, ξ ) ζ )¯ 2g(ξ, ξ ) (g(ξ, ξ )c), hence

g(ξ, ξ ) (g(ξ, ξ )c)¯ 0. (3±16)

Suppose g(ξ, ξ )¯ 0. As ξ¯ 0, (3±15) simplifies to

cg(X,X)2g(X, ζ )#2g(JX, ζ )#¯ 0.

Since dimM& 4, we can take X orthogonal to ζ and to Jζ, so cg(X,X)¯ 0, that is,

the manifold is flat. From (3±4) we deduce

g(X, ζ ) g(JY, ζ )®g(Y, ζ ) g(JX, ζ )¯ 0.

Taking X¯ ζ we have g(ζ, ζ ) ζ¯ 0, which implies ζ¯ 0, but then S vanishes.

On the other hand, if g(ξ, ξ )1 0, then (3±16) gives g(ξ, ξ )c¯ 0; hence ζ¯ 0.

The case ξ¯ 0, ζ1 0 has been already discarded in the previous lemma.

Remark 3±4. In the conditions of Lemma 3±2, for ξ¯ 0, ζ1 0, substituting (3±2) in

(3±5), as ~J¯ 0 we have

(~
X

R)
YZWU

¯ 2g(JX, ζ ) (R
JYZWU

R
YJZWU

R
YZJWU

R
YZWJU

)¯ 0.

Thus (M, g,J) is Hermitian symmetric. As we have seen, it is holomorphically

isometric to a Ka$ hler product, with a 2-dimensional factor, which is a space of

negative constant curvature ®4g(ζ, ζ ), as it follows from (3±4).
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Now, there are ([10, pp. 518–520]) four non-flat non-compact Hermitian symmetric

surfaces : SU(1, 1)}S(U(1)¬U(1)), SO*(4)}U(2), SO
!
(2, 1)}SO(2)¬1 and Sp(1)}U(1).

All of them are isomorphic and can be identified to the real hyperbolic space

SO
!
(2, 1)}SO(2)¬1. Taking the half-plane Poincare! model H¯²z¯ xiy `# :y" 0´

for it, we have the metric and the complex structure (particular cases of (4±2) and

(4±3) below)

g¯®
dx#dy#

cy#

, J¯
¦
¦y

C dx®
¦
¦x

C dy.

It is immediate that the vector field ζ¯®(cy}2) ¦}¦y (a particular case of (4±4)

below) satisfies the equation ~
X

ζ¯ 2g(X,Jζ )Jζ, ~ being the Levi–Civita connection

of g. We conclude that in the simply connected reducible case one can also consider

spaces holomorphically isometric to products of the 2-dimensional Siegel domain

model of the complex hyperbolic space, that is, the above half-plane Poincare! model,

equipped with the Ka$ hler homogeneous structure S given by S
X

Y¯ 2g(X,Jζ )JY,

and any other Hermitian symmetric space, endowed with its standard vanishing

Ka$ hler homogeneous structure as a Hermitian symmetric space.

4. Proof of Theorem 1±1

As for the converse, it suffices to give a non-vanishing Ka$ hler homogeneous

structure on any model of negative constant holomorphic sectional curvature. Thus,

to finish the proof we explicitly give such a structure on the Siegel domain

D
+
¯ ((z¯ xiy,u",… ,un) `#n+" :y® 3

n

k="

ukua k" 0* ,
equipped with the Ka$ hler structure obtained by a convenient Cayley transform ([14,

p. 5]) from that of the unit open ball in #n+" ([9, p. 227] or [12, p. 169], changing the

sign in the second summand of the numerator in the last expression of the metric).

A calculation shows that

g
+
¯®

1

c(y®3ukua k)#
²dz dza4(y®3ukua k)3 duk dua k

2i(dz3ukdua k®dza 3ua kduk)4(3ua kduk) (3ukdua k)´.

(D
+
, g

+
,J

+
) is a Ka$ hler manifold, with

J
+
¯ i 0 ¦

¦z
C dz 3

n

k="

¦
¦uk

C duk®
¦
¦za

C dza® 3
n

k="

¦
¦ua k

C dua k1 .
The Riemannian manifold (D

+
, g

+
) is homogeneous, hence complete. Since (D

+
, g

+
,J

+
)

is connected, simply connected and complete, it is a model of negative constant

holomorphic sectional curvature. Furthermore, we seek for a homogeneous structure

S of the type

S
X

Y¯ g(X,Y) ξ®g(ξ,Y)X®g(X,JY)Jξg(ξ,JY)JX.

Since ~h ξ¯ 0, we must find a vector field ξ on D
+

satisfying

~
X

ξ¯ g(X, ξ ) ξ®g(ξ, ξ )X®g(X,Jξ )Jξ. (4±1)
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Putting uk¯ vkiwk, the metric g
+

and the complex structure J
+

are written as

g
+
¯®

1

c[y®3 ((vk)#(wk)#)]#
²dx#dy#4[y® 3

j1k

((v j)#(w j)#)]

¬3 ((dvk)#(dwk)#)®4[dx3 (wkdvk®vkdwk)®dy3 (vkdvkwkdwk)]

8 3
k,l

[(vkvlwkwl) (dvkdvldwkdwl)(vlwk®vkwl) (dvkdwl®dwkdvl)]´, (4±2)

J
+
¯

¦
¦y

C dx®
¦
¦x

C dy3 0 ¦
¦wk

C dvk®
¦

¦vk
C dwk1 . (4±3)

A long but straightforward computation shows that the vector field

ξ¯®
c

2
(y®3ukua k)

¦
¦y

(4±4)

satisfies (4±1) for all X. Specifically, if X is given by

X¯α
¦
¦x

β
¦
¦y

3 0γk

¦
¦vk

δ
k

¦
¦wk1 ,

we obtain

~
X

ξ¯
c

4 (2 9(α3 (δ
k
vk®γ

k
wk))

¦
¦x

3 (γ
k
vkδ

k
wk)

¦
¦y:

3 0γk

¦
¦vk

δ
k

¦
¦wk1* .

Hence, (D
+
, g

+
,J

+
) admits the Ka$ hler homogeneous structure S given by

S
X

Y¯®
c

2
(y®3ukua k) (g(X,Y)

¦
¦y

®g 0 ¦
¦y

,Y1X

g(X,JY)
¦
¦x

g 0 ¦
¦y

,JY1JX* . (4±5)

According to Heintze’s Theorem ([11, theorem 4]), a connected homogeneous

Ka$ hler manifold of negative curvature is holomorphically isometric to the complex

hyperbolic space. Hence

C 4±1. A connected homogeneous KaX hler manifold of real dimension 2n& 4

and negative curvature admits a nonvanishing KaX hler homogeneous structure

S `+
#
G+

%
.

Remark 4±2. (i) The Siegel domain D
+

thus admits at least two Ka$ hler homogeneous

structures : S¯ 0, as D
+

is a realization of the noncompact Hermitian symmetric

space U(1,n)}U(1)¬U(n) ; and the non-vanishing structure S in (4±5), corresponding

to the fact that the solvable group #Hn (see [11, p. 33]) acts simply transitively on

D
+

(see [11, p. 32], [5, p. 181], [4, p. 92]) by holomorphic isometries. Hence, we can

identify D
+

with #Hn and thus it is immediate to obtain the expression of the

canonical connection on the reductive homogeneous space (D
+
, g

+
,J

+
) identified to

the solvable group #Hn.
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(ii) For dimM¯ 2 only the class +
%
remains. This case has been studied by Abbena

and Garbiero [1, p. 391].
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