

Synthesis and structural study of $[(Pd(C_6H_4CH_2N(CH_3)_2))_2(\mu-Br)(\mu-X)]$ complexes (X = hydroxide,amide or thiolate)

José Ruiz a, Natalia Cutillas a, José Sampedro a, Gregorio López a, Juan A. Hermoso b, Martin Martinez-Ripoll ^b

Received 29 February 1996; revised 14 May 1996

Abstract

The mixed hydroxo-bromo bridged complex $[\{Pd(C_6H_4CH_2NMe_2)\}_2(\mu-Br)(\mu-OH)]$ (1) $(C_6H_4CH_2NMe_2 = 2-[(dimethyl-dimensional expression of the complex of the complex$ amino)methyl]phenyl) has been prepared by addition of one equivalent of NBu₄OH to [{Pd(C₆H₄CH₂NMe₂)(µ-O₂CMe)}₂] in acetone-water solution, followed by addition of one equivalent of LiBr. Complex 1 reacts with arylamines or thiols in 1:1 mole ratio to yield the corresponding amido- or thiolato-bromo complexes $[{Pd(C_6H_4CH_2NMe_2)}_2(\mu-Br)(\mu-NHR)]$ (R = C_6H_5 (2), p-MeOC₆H₄ (3), $p\text{-MeOC}_6H_4$ (4)) or [[Pd(C₆H₄CH₂NMe₂)]₂(μ -Br)(μ -SR)] (R = Et (5), ¹Bu (6), C₆H₅ (7), $p\text{-MeC}_6H_4$ (8)). The ¹H NMR data indicate a cis arrangement of the C₆H₄CH₂NMe₂ ligands. The crystal structure of compound 1 has been determined by X-ray diffraction. It crystallizes in the orthorhombic space group Pbca with a = 12.445(3), b = 18.029(3), c = 17.436(3) Å. Final R = 0.039 and $R_w = 0.040$ based on 2692 reflections.

Keywords: Palladium; Cyclometallated; Hydroxo; Amido; Thiolato; X-ray diffraction

1. Introduction

The binuclear hydroxo compounds $[(MR_2(\mu_2))]$ OH)), J^{2-} (M = Ni, Pd or Pt; R = C_6F_5 or C_6Cl_5) and $[(R(PPh_3)Pd(\mu-OH))_2]$ (R = C₆F₅ or C₆Cl₅) have proven to be excellent precursors for the synthesis of binuclear palladium or platinum complexes with double bridges (X = azolate, amide, methoxide or dicyanomethanide) by reaction between the di-µ-hydroxo complex and the corresponding protic acid HX [1-8]. Very recently we have described [9] the synthesis of the hydroxo carboxylato-bridged complex [{Pd(CH₂C₉ $H_6 N$), $(\mu - O_2 CR)(\mu - OH)$] $(CH_2 C_0 H_6 N = 8$ -quinolylmethyl) and its reactivity towards amines and thiols to yield the corresponding amido- or thiolato-carboxylato complexes $[\{Pd(CH_{2}C_{9}H_{6}N)\}_{2}(\mu-O_{2}CR)(\mu-X)]$ (X = amide or thiolate).

Complexes containing the Pd(μ -Br)(μ -OH)Pd bridge are rare in the literature. The present work concerns the

2. Results and discussion

Addition of one equivalent of NBu 4OH to $[\{Pd(C_6H_4CH_2NMe_2)(\mu-O_2CMe)\}_2]$ in acetone—water solution, followed by addition of one equivalent of LiBr, results in the formation of the hydroxo-bromobridged complex 1 (Scheme 1) in good yield (Table 1). The analytical data (Table 1) are in agreement with the proposed formula. The presence of the OH-bridged ligand is showed by an IR band at 3465 cm⁻¹ and a high-field ^{1}H resonance at $\delta - 1.70$ (see Section 3). The observation of only one set of ¹H NMR resonances

^a Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain

Instituto de Química-Física 'Rocasolano'-CSIC, Serrano 119, 28006 Madrid, Spain

synthesis and structural study of the hydroxo--bromobridged complex $[{Pd(C_6H_4CH_2NMe_2)}_2(\mu-Br)(\mu-$ OH)] $(C_6H_4CH_2NMe_2 = 2-[(dimethyl$ amino)methyl]phenyl) and its reactivity towards amines and thiols to yield the corresponding amido- or thiolato-bromo complexes $[\{Pd(C_6H_4CH_2NMe_2)\}_2(\mu_2)]$ Br)(μ -X)] (X = amide or thiolate).

Corresponding author.

Scheme I. (i) OH , Br ; (ii) NH, R; (iii) RSH.

for the C₀H₄CH₂NMe₂ ligands in complex 1 indicates a cis arrangement for these groups.

The crystal structure of complex 1 has been established by X-ray diffraction, and a view of the molecule is depicted in Fig. 1. Atomic coordinates and selected intramolecular distances and angles are shown in Tables 2 and 3 respectively. The molecule consists of a binuclear (Pd) structure bridged by an OH group and a Br atom. Fig. 1 shows the cisoid arrangement of the cy-

clometallated ligands and the arrangement of the bridges so that the Br atom is trans to carbon.

The Pd atoms are in approximately square-planar coordination (maximum deviations from the mean plane defined by all of them being 0.0762(6) Å for Pd1 and 0.0443(6) Å for the Pd2 atom), the two planes forming an angle of 13° between them. The angles around the Pd atoms deviate from the square disposition due to the bite of the bidentate $C_6H_4CH_2NMe_2$ ligand. Phenyl

Table 1
Analytical data, yields and physical properties for the new complexes

Complex	Yield (%)	M,p, ^a (θ/°C)	Analysis (%) h				IR bands C
			C	H	N	S	(cm ⁻¹)
1 4	67	156	37.1 (37.4)	4.3 (4.4)	4.7 (4.9)		3465 v(OH)
2	92	188	44.2 (44.1)	4,7 (4.6)	6.2 (6.4)		3330 v(NH)
3	68	183	44.8 (45.0)	4.8 (4.8)	6.0 (6.3)		3330 v(NH)
4	88	194	43.6 (43.9)	4.5 (4.7)	6.0 (6.2)		3340 r(NH)
5	60	191	38.7 (38.6)	4.8 (4.7)	4.4 (4.5)	5.0 (5.2)	
6	66	195	40.7 (40.6)	5.2 (5.1)	4.3 (4.3)	4.9 (4.9)	
7	89	188	42.8 (43.0)	4.3 (4.4)	4.0 (4.2)	4.6 (4.8)	
8	88	172	43.6 (43.9)	4,5 (4.6)	4.0 (4.1)	4,4 (4,4)	

With decomposition. Calculated values in parentheses. In Nujol mults. Analysis of Br = 13.6 (13.8)%.

Fig. 1. An ORTEP [10] drawing of the compound 1 showing 50% probability ellipsoids and the atom-labelling scheme. Hydrogen atoms are omitted for clarity.

rings are planar. Structures containing the M(μ -Br)(μ -OH)M bridge are not common in the literature, and to the best of our knowledge, the Pd(μ -Br)(μ -OH)Pd bridge is the first to be characterized in a diffraction study. The angles on the Br and O atoms are 78.23(3)° and 106.8(2)°. The Pd-O distance (2.029(5) and 2.034(5)Å) is slightly shorter than that found in [(C₆F₅)₂Pd(μ -OH)₂Pd(C₆F₅)₂]²⁻ (2.077(6) and 2.068(6)Å, the PdOPd angle being 98.8(0.4)°) [1].

Crystal packing presents a partial stacking pattern of aromatic interactions [11] forming chains along the a axis (see Fig. 2). The two phenyl groups involved in the

interaction present an interplanar angle of 21.2°, a lateral offset of 5.39 Å and a distance between centroids of 6.02 Å.

Mixed amide complexes of the types anti-[$\{Pd(C_6F_5)(PPh_3)\}_2(\mu-NHR)(\mu-OH)\}$] and cis-[$\{Pd(CH_2C_9H_6N)\}_2(\mu-O_2CR')(\mu-NHR)\}$] ($CH_2C_9H_6N$) = 8-quinolylmethyl) have been previously reported [6,9]. Addition of amine RNH2 to a solution of the hydroxo-bromo complex 1 in chloroform gives (70–90% yields; Table 1) the corresponding bromo-amido-bridged complexes [$\{Pd(C_6H_4CH_2NMe_2)\}_2(\mu-Br)(\mu-NHR)\}$] ($R=C_6H_5$ 2, p-MeC₆H₄ 3, p-MeOC₆H₄ 4) with the concomitant release of water (Scheme 1). These complexes gave satisfactory partial elemental analyses (Table 1), and the IR spectra (Table 1) show a weak absorption at ca. 3330 cm⁻¹ assigned to the N-H stretching vibration.

The ¹H NMR spectra (see Section 3) of complexes 2-4 show two singlet resonances for the N-Me groups and an AB quartet for the CH₂ protons of bonded C₆H₄CH₂NMe₂, since they are diastereotopic due to the two different substituents in the amide ligand with the lack of a symmetry plane in the Pd-O-Pd-N core; no dynamic behaviour is observed at room temperature [12]. These data also suggest a cis arrangement of the C₆H₄CH₂NMe₂ ligands. The NMR patterns observed for the aromatic proton signals of the RNH group indicate that rotation about the C-N bond is rapid on the ¹H NMR time scale.

Table 2 Atomic parameters (×10⁴) for compound 1; coordinates and thermal parameters as $U_{\rm en}^{-4}$

Atom	X	Ņ	79 19.1	U_{eq}
PdI	722(0)	1176(0)	834(0)	34(0)
Pd2	= 1380(0)	733(0)	- 185(0)	33(0)
Brl	- 1111(1)	667(1)	1285(1)	55(0)
NI	1297(6)	1506(4)	1901(4)	44(2)
N2	- 3028(5)	583(3)	177(4)	37(1)
OI	223(4)	945(3)	- 248(3)	41(1)
Ċi	852(9)	2257(6)	2059(6)	65(3)
C2	1006(8)	1013(6)	2531(5)	60(3)
C3	2478(8)	1555(6)	1856(6)	57(2)
C4	2767(6)	1802(4)	1073(6)	46(2)
C5	2063(6)	1643(4)	479(5)	40(2)
C6	2300(7)	1856(4)	- 263(5)	43(2)
C7	3229(8)	∠205(5)	-433(7)	62(3)
C8	3954(8)	2342(5)	144(8)	63(3)
C9	3746(8)	2154(5)	881(8)	64(3)
C10	- 3519(8)	1312(5)	~ 67(7)	59(2)
CII	- 3423(7)	60(6)	403(5)	51(2)
C12	- 3321(7)	287(5)	- 952(6)	52(2)
C13	- 2610(6)	621(4)	- 1539(5)	39(2)
C14	1587(6)	812(4)	- 1302(5)	39(2)
C15	-855(7)	1092(5)	- 1810(5)	46(2)
C16	-1142(9)	1161(6)	- 2568(6)	59(3)
C17	- 2187(9)	979(5)	- 2811(5)	57(3)
C17	- 2895(8)	710(6)	- 2303(6)	57(2)

^a $U_{\text{eq}} = (1/3) \sum [U_{ij}a_i * a_j * a_i a_j \cos(a_i, a_j)] \times 10^3$.

Table 3
Selected intramolecular distances (Å) and angles (deg) for 1 with estimated standard deviations in parentheses

Bonds				
Pd1-Br1	2.582(1)	NI-CI	1.489(13)	
Pd1-N1	2.080(7)	N1-C2	1.459(12)	
Pd1-O1	2.029(5)	N1-C3	1.475(12)	
Pd1-C5	1.969(8)	N2-C10	1.462(11)	
Pd2-Br1	2.588(1)	N2-C11	1.467(12)	
Pd2-N2	2.069(6)	N2-C12	1.498(12)	
Pd2-O1	2.034(5)	C3-C4	1.480(15)	
Pd2-C14	1.969(8)	C12-C13	1.481(13)	
Angles				
OI-PdI-C5	93.1(3)	C2-N1-C3	108.9(7)	
NI-PdI-C5	82.4(3)	C10-N2-C11	110.3(7)	
Br1-Pd1-O1	86.6(1)	C11-N2-C12	108.1(6)	
Br1-Pd1-N1	97.6(2)	N1-C3-C4	108.0(8)	
O1-Pd2-C14	93.5(3)	C3-C4-C5	118.2(8)	
N2-Pd2-C14	83.5(3)	C3-C4-C9	124.2(9)	
Br1-Pd2-O1	86.3(2)	C5-C4-C9	117.4(8)	
Br1-Pd2-N2	96.7(2)	N2-C12-C13	109.5(7)	
C1-N1-C2	108.8(7)	C12-C13-C14	116.4(7)	
C1-N1-C3	109.0(7)	C12-C13-C18	123.9(8)	

Addition of thiols RSH to a solution of the hydroxo-bromo complex 1 in chloroform yields the corresponding bromo-thiolate-bridged complexes [$(Pd(C_6H_4CH_2NMe_2))_2(\mu-Br)(\mu-SR)$] (R = Et 5, ¹Bu 6, C_6H_5 7, p-MeC₆H₄ 8) (Scheme 1). The analytical data and yields for these compounds are presented in Table 1. The related mixed thiolato-carboxylato-bridged complexes cis-[$(Pd(CH_2C_9H_6N))_2(\mu-SR)(\mu-O_2CR)$] (CH₂C₉H₆N = 8-quinolylmethyl) [9] and cis-[$(Pd(L-L))_2(\mu-SR)(\mu-O_2CR)$] (L-L = ortho-palladated imine ligand) [13] have been recently reported.

The NMR data for the complexes 5, 7 and 8 show a unique singlet resonance for N-Me protons and also a singlet for the CH₂ protons of bonded $C_6H_4CH_2NMe_2$, which suggests again the cis arrangement of the $C_6H_4CH_2NMe_2$ ligands. However, the NMR spectrum of complex 6 exhibits an AB quartet resonance for the CH₂ protons and two singlet resonances for the N-Me

Fig. 2. Crystal packing of the compound 1 showing aromatic interactions as dotted lines.

protons, which is in agreement with a slower rotation caused by the bulkier 'Bu group.

3. Experimental details

The C, H, N, S analyses were performed with a Carlo Erba model EA 1108 raicroanalyser. The Br analyses were performed in the microanalyses service of the Centro de Investigación y Desarrollo of the CSIC, Barcelona, Spain. Decomposition temperatures were determined with a Mettler TG-50 thermobalance at a heating rate of 5 °C min⁻¹ and the solid sample under nitrogen flow (100 ml min⁻¹). The NMR spectra were recorded on a Bruker AC 200E or Varian Unity 300 spectrometer, using SiMe₄ as standard. Infrared spectra were recorded on a Perkin–Elmer 16F PC FT-IR spectrophotometer using Nujol mulls between polyethylene sheets. Solvents were dried by the usual methods. The starting complex [{Pd(C₆H₄CH₂NMe₂)(μ-O₂CMe)}₂] was prepared by the procedure described in Ref. [14].

3.1. Synthesis of the complexes

3.1.1. Complex 1

To a solution of [{Pd($C_6H_4CH_2NMe_2$)(μ - O_2CMe)}₂] (205.5 mg, 0.343 mmol) in acetone (1 cm³) was added 20% [NBu₄]OH(aq) (0.45 cm³, 0.343 mmol), with constant stirring. Addition of LiBr (29.8 mg, 0.343 mmol) yielded a white suspension, which was stirred at room temperature for 5 min. After partial evaporation of the solvent under reduced pressure, the white complex 1 was filtered off and air-dried.

¹H NMR (CDCl₃): δ 7.0–6.9 (m, 8H, arom. of dmba), 3.71 (s, 4H, NCH₂), 2.69 (s, 12H, NCH₃), –1.70 (s, OH).

3.1.2. Complexes 2-4

The appropiate amine NH₂R (0.1037 mmol) was added to a solution of [{Pd(C_6 H₄CH₂NMe₂)}₂(μ -Br)(μ -OH)] (60 mg, 0.1037 mmol) in chloroform (2 cm³), and the solution was stirred for 1 h. After partial evaporation of the solvent under reduced pressure, the addition of hexane caused the precipitation of white or yellowish solids which were filtered off and air-dried.

Complex 2: ${}^{1}H$ NMR (CDCl₃): δ 7.78 (d, 2H, H_o of C₆H₅NH, J 7.8), 7.10 (m, 3H, H_m + H_p of C₆H₅NH), 7.0-6.9 (m, 8H, arom. of dmba), 3.90 (d, 2H, NCH₂, J 13.7), 3.67 (d, 2H, NCH₂, J 13.7), 2.79 (s, 6H, NCH₃), 2.66 (s, 6H, NCH₃).

Complex 3: 1 H NMR (CDCl₃): δ 7.66 (d, 2H, H_n of MeC₆H₄NH, J 8.2), 7.0–6.9 (m, 10H, H_m of MeC₆H₄NH + arom. of dmba), 3.90 (d, 2H, NCH₂, J 13.7), 3.66 (d, 2H, NCH₂, J 13.7), 2.80 (s, 6H, NCH₃), 2.66 (s, 6H, NCH₃), 2.48 (s, 3H, CH₃ of MeC₆H₄NH).

Complex 4: ¹H NMR (CDCl₃): δ 7.70 (d, 2H, H₀ of MeOC₆H₄NH, J 8.7), 7.0–6.9 (m, 8H, arom. of dmba), 6.66 (d, 2H, H₀ of MeOC₆H₄NH, J 8.7), 3.89 (d, 2H, NCH₂, J 13.7), 3.70 (s, 3H, CH₃ of MeOC₆H₄NH), 3.65 (d, 2H, NCH₂, J 13.7), 2.79 (s, 6H, NCH₃), 2.65 (s, 6H, NCH₃).

3.1.3, Complexes 5 and 6

The appropiate thiol RSH (0.1037 mmol) was added to a solution of [{Pd($C_6H_4CH_2NMe_2$)}₂(μ -Br)(μ -OH)] (60 mg, 0.1037 mmol) in chloroform (2 cm³). The resulting solution was stirred for 1 h. Partial evaporation of the solvent under reduced pressure, followed by addition of hexane, caused the precipitation of white or yellowish solids which were filtered off and air-dried.

Complex 5: ¹H NMR (CDCl₃): δ 7.55 (m, 2H, arom. dmba), 6.90 (m, 6H, arom. dmba), 3.81 (s, 4H, NCH₂), 2.70 (s, 12H, NCH₃), 2.64 (q, 2H, CH₂S, *J* 7.3), 1.61 (t, 3H, *CH*₃CH₂S, *J* 7.3).

Complex 6: ¹H NMR (CDCl₃): δ 7.74 (m, 2H, arom. dmba), 6.89 (m, 6H, arom. dmba), 4.15 (d, 2H, NCH₂, *J* 13.6), 3.45 (d, 2H, NCH₂, *J* 13.6), 2.73 (s, 6H, NCH₃), 2.63 (s, 6H, NCH₃), 1.56 (s, 9H, ¹BuS).

3.1.4. Complexes 7 and 8

The appropiate thiol RSH (0.1037 mmol) was added to a solution of [{Pd($C_6H_4CH_2NMe_2$)}₂(μ -Br)(μ -OH)] (60 mg, 0.1037 mmol) in chloroform (2 cm³). The resulting solution was stirred for 30 min, during which time complexes **7** and **8** precipitated and were filtered off and air-dried.

Complex 7: ${}^{1}H$ NMR (CDCl₃): δ 8.07 (m, 2 H, H_o C₆H₅S), 7.60 (m, 2H, arom. dmba), 7.05 (m, 3H, H_{m+n}

C₆H₅S), 6.89 (m, 6H, arom. dmba), 3.83 (s, 4H, NCH₂), 2.74 (s, 12H, NCH₃).

Complex 8: ¹H NMR (CDCl₃): δ 7.97 (d, 2H, H_o p-MeC₆H₄S, J 8.1), 7.61 (m, 2H, arom. dmba), 6.87 (m, 8H, H_m p-MeC₆H₄S + arom. dmba), 3.82 (s, 4H, NCH₂), 2.73 (s, 12H, NCH₃), 2.15 (s, 3H, p-MeC₆H₄S).

3.2. Crystal structure determination of complex 1

Suitable crystals were grown from dichloromethane-hexane. Crystal data: $Pd_2BrON_2C_{18}H_{25}$, orthorhombic, *Pbca*, a = 12.445(3), b = 18.029(3), c = 17.436(3) Å, V = 3912.1(12) Å³, $D_c = 1.967$ g cm⁻³, M = 579.12, F(000) = 2264, $\mu = 38.472$ cm⁻¹, Z = 8.

5102 reflections up to $\theta = 28^{\circ}$ (4710 independent) were measured on an Enraf Nonius CAD4 diffractometer with graphite monochromated Mo K α radiation and using $\omega - 2\theta$ scan mode. 2692 reflections were considered as observed with $I > 3\sigma(I)$ criterion. Scattering factors and anomalous dispersion coefficients were taken from Ref. [15]. The heavy-atom (Pd) method and DIRDIF [16] system were followed by normal Fourier synthesis. Most of the H atoms were found on a difference map; others were located at the calculated positions [17].

Full-matrix least squares refinements [18], 217 variables, 2475 degrees of freedom, ratio of freedom 12.4, non-H atoms anisotropic, H atoms isotropic. Least squares weights were applied so as to give no trends in $\langle w\Delta^2 F \rangle$ vs. $\langle F_o \rangle$ and $\langle \sin \theta / \lambda \rangle$ with $w = K/(\sigma_1^2 \sigma_2^2)$ where K = 1, $\sigma_1 = f(F_o)$ and $\sigma_2^2 = g(\sin \theta / \lambda)$ [19]. Final R and R_n were 0.039 and 0.040 respectively. Geometrical calculations were performed with PARST [20] and CSU [21] on a VAX 6410.

Additional material from the authors or the Cambridge Crystallographic Data Centre comprises tables of H coordinates, thermal parameters, bond distances and bond angles. Structure factors tables are available from the authors.

Acknowledgements

Financial support from the DGICYT (project PB94-1157), Spain, is gratefully acknowledged.

References

- [1] G. López, J. Ruiz, G. García, C. Vicente, J. Casabó, E. Molins and C. Miravitlles, *Inorg. Chem.*, 30 (1991) 2605.
- [2] G. López, G. García, G. Sánchez, J. García, J. Ruiz, J.A. Hermoso, A. Vegas and M. Martínez-Ripoll, *Inorg. Chem.*, 31 (1992) 1518.
- [3] G. López, J. Ruiz, G. García, C. Vicente, J.M. Martí, J.A. Hermoso, A. Vegas and M. Martínez-Ripotl, J. Chem. Soc. Dalton Trans., (1992) 53..

- [4] G. López, J. Ruiz, G. García, J.M. Martí, G. Sánchez and J. García, J. Organomet. Chem., 412 (1931) 435.
- [5] J. Ruiz, C. Vicente, J.M. Martí, N. Cutillas, G. García and G. López, J. Organomet. Chem., 460 (1993) 241.
- [6] J. Ruiz, M.T. Martínez, C. Vicente, G. García, G. López, P.A. Chaloner and P.B. Hitchcock, Organometallics, 12 (1993) 4321.
- [7] G. López, J. Ruiz, G. García, C. Vicente, V. Rodríguez, G. Sánchez, A. Hermoso and M. Martínez-Ripoll, J. Chem. Soc. Dalton Trans., (1992) 1681.
- [8] G. López, G. Sánchez, G. García, J. Ruiz, J. García, M. Martínez-Ripoll, A. Vegas and J.A. Hermoso, Angew. Chem. Int. Ed. Engl., 30 (1991) 716.
- [9] J. Ruiz, N. Cutillas, J. Torregrosa, G. García, G. López, P.A. Chaloner, P.B. Hitchcock and R.M. Harrison, J. Chem. Soc. Dulton Trans., (1994) 2353.
- [10] C.K. Jhonson, ORTEP, Rep. ORNL-3794, 1965 (Oak Ridge National Laboratory, Tennessee).
- [11] G. Desiraju, Crystal Engineering, Elsevier, 1989.
- [12] G. van Koten and J.G. Noltes. J. Am. Chem. Soc., 101 (1979)
- [13] M.J. Baena, P. Espinet, M.B. Ros, J.L. Serrano, and A. Ezcurra, *Angew. Chem. Int. Ed. Engl.*, 32 (1993) 1201.

- [14] B.N. Cockburn, D.V. Howe, T. Keating, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton Trans., (1973) 405.
- [15] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, UK, 1974.
- [16] P.T. Beurskens, W.P. Bosman, H.M. Doesburg, R.O. Gould, Th.E.M. Van Der Hark, P.A. Prick, J.H. Noordik, G. Beurskens, V. Parthasarathi, H.J. Bruins Slot and R.C. Haltiwanger, DIRDIF System of Computer Programs, Technical Rep. 1983/1,, 1983 (Crystallography Laboratory, Toemooiveld, 6525 ED Nijmegen, Netherlands).
- [17] J. Fayos and M. Martínez-Ripoll, HSEARCH. A Computer Program for the Geometric Calculation of H-atoms Coordinates, Instituto Rocasolano C.S.I.C., Madrid, 1978.
- [18] J.M. Stewart, F.A. Kundell and J.C. Baldwin, The XRAY80 System of Crystallographic Programs, Computer Science Center, University of Maryland, College Park, MD, 1976.
- [19] M. Martínez-Ripoll and F.H. Cano, PESOS. A Computer Program for the Automatic Treatment of Weighting Schemes, Instituto Rocasolano C.S.I.C., Madrid, 1975.
- [20] M. Nardelli, PARST, Università di Parma, Parma, Italy. 1983.
- [21] I. Vickovic, Csu, University of Zagreb, Zagreb, 1988.