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Abstract. Enynone 1 undergoes facile 1,6-addition of organocopper reagents to 
yield allenyl enols 5 which stereoselectively isomerize to Z-dienones 2. 

Conjugate, 1,4- or Michael-type addition reactions of organometallic nucleophiles to 

a,@unsaturated carbonyl substrates in aprotic solvents are powerful synthetic tools. 1-3 

In contrast, 1,6-additions to a,8, ,6-unsaturated carbonyl substrates have received 

comparatively little attention.lcs4 Reported examples using 2,4-dienones as substrates 

indicate that the preponderance of 1,2-, 1,4- or 1,6-addition is dependent upon a number of 

factors,4c*5 including nucleophile identity, relative steric environments of the electro- 

philic carbons of the dienone and substrate planarity. Although 1,6-additions to 2-en-4- 

ynones are unexplored, the relative steric congestion of the electrophilic carbons of such 

substrates suggest that organocopper nucleophiles would react with high regioselectivitylC 

in a 1,6-fashion. 

To test this hypothesis as well as to investigate the possibility of preparing allenes 

by a conjugate addition process, 3-ethynyl-2-methyl-2-cyclopentenone (1, mp 61-63'C) was 

prepared from 3-isobutoxy-2-methyl-2-cyclopentenone6 by addition of lithium acetylide and 

subsequent workup using 1 g acid.7 When an ether solution of 1 was added dropwise to 

dialkylcoppermetal reagents formed in ether and held at -78°C. a rapid reaction occurred 

wherein all of 1 was consumed as monitored by TLC. Subsequent workup by quenching at -78°C 

using aqueous saturated NH&Cl and isolation of the reaction products by chromatography 

indicated very good conversions to dienones 2 (Eq. 1 and TABLE). "Higher-order" organo- 

cuprates formed from two equivalents of a Grignard reagent or (better still) an organo- 

lithium reagent and one equivalent of CuCN are clear reagents of choice for the transforma- 

tion; "lower-order" Gilman-type reagents react more slowly and yields of 2 are quite 

variable. Additionally, products 2 are formed stereoselectively. In each case using an 

organocopper nucleophile, the less thermodynamically stable Z-geometry of the 3-allcenyl 
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(CH-j)2CuLi 

CH3Cu(CN)Li 

(CH3)2Cu(CN)Li2 

(C2Ii5)2Cu(CN)(MgBr)2 

(t-CqH9)2Cu(CN)Li2 

C6H5sLi C6H5S 

1. -78", 1.5h 
+RM 

Addition Reactions to Enynone 1 

Product 2,R= Yield,Xasd 'H-NMR,H, 

C% 44-82 

Ratio Z-2:E-2 

z: 6 6.34,d,JAR=12.8Ez 
E: 6 6.65,d,JAB=14.9Hz 

2:l 

CH3 

CH3 

c2H5 

i-C3H7 

S-C4Hg 

C6H5 

95= 

91,99= 

77.87C 

87 

93 

57 

88 

52 

z: 6 6.36,d,JAB=11.9Hz 
E: 6 6.72,d,JAB=15.8Hz 

2: 6 6.17,d,JAB=12.0Hz 
E: 6 6.53,d,JAB=15.8Hz 

z: 6 5.77,d,JAB=13.2Hz 
E: 6 6.50,d,JAB=16.1Hz 

3: 6 6.86,d,JAB=12.2Hz 
E: 6 7.30,d,JAB=15.8Eiz 

z: 6 6.78,d,JAR=10.5Hz 
E: 6 7.02,d,JAB=15.6Hz 

2:l 

2.5:1 

3:l 

4:l 

34:l 

6:l 

6:l 

1:17 

& 'II-NMR and GC or HPLC. 
Isolated yield using preparative thin layer chromatcgraphy. b. Determined 

c. GC or HPLC yield using an internal standard. d. 
All products 2 gave satisfactory C,H elemental analyses. 

substituent in the product predominates. Moreover, this stereoselectivity is a function of 

the steric bulk of the R group added: the ratio Z-2:E-2 increases from 2.5:1 to 34:l when R 

is varied from methyl to t-butyl. Such Z-stereoselectivity in the formation of 2 can be 

rationalized by examining the consequences of a predominant 1,6-addition mode for substrate 

1: addition of R initially gives rise to vinylmetallic species 3, which isomerizes to a 

resonance-stabilized allenyl enolate, 4, that upon workup forms a transient allenyl enol 5. 

As suggested in equilibrations of P-allenyl esters9 and analogous addition reactions to 

a,e-acetylenic carbonyl substrates, 10 enol 5 isomerizes to its thermodynamically more 

stable, fully conjugated isomer 2 by preferential protonation from the less hindered face 

of the sp-hydridzed carbon of the allene moiety, resulting in the predominant Z-geometry of 

the 3-alkenyl substituent of 2. 
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In contrast to this 1,6-addition mode and its stereochemical consequences, addition of 

a heteroatom nucleophile that favors formation of localized vinyl anion ll 3 and stabilizes 

it so that isomerization to enolate 4 is inhibited should result in a complementary, 

distinct mode of syn 1,2-addition across the ethynyl group of 112 and in a preferential 

formation of E-2. Indeed, addition of phenylthiolithium to 1 favors the formation of g-2 

(R=SCgHS, Z:E = 1:17), suggesting that this complimentary 1,2-addition pathway through a 

S-thio-stabilized vinyllithium intermediate, rather than the 1,6-addition pathway via a 

resonance-stabilized enolate intermediate, is operative. 
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