Synthesis and Cycloaddition Reactions of Ethyl (E)-3-Aryl-2-(nonafluorobutyl)sulfonyl-2-propenoates

Olaf Menke, Elke Steinhuber, Antonio García Martínez, L. R. Subramanian, Michael Hanack*

^a Institut für Organische Chemie, Lehrstuhl für Organische Chemie II, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

Received 9 September 1994

Dedicated to Prof. C. W. Jefford on the occasion of his 65th birthday.

Abstract: Ethyl (nonafluorobutyl)sulfonylacetate (2) reacts stereoselectively with substituted benzaldehydes 3 affording (E)-3-aryl-2-(nonafluorobutyl)sulfonyl-2-propenoates (E)-4, which are good dienophiles. The addition to cyclopentadiene yields exclusively the *exo*-products 8.

The (perfluorobutyl)sulfonyl group has found several interesting applications in organic synthesis especially due to its ambivalent function as an electrophile or as a nucleofuge leaving group. Thus carbon-carbon multiple bonds in alkenyl and alkynyl perfluoralkyl-sulfones are highly activated by the electron-withdrawing effect of the perfluoralkylsulfonyl group for nucleophilic attack and cyclo-additions. For an even higher dienophilic character, it would be of interest to have two electron-withdrawing groups in the 1,1-position of the alkene. 10,11 In this regard, we report here on the stereoselective synthesis of a new type of α , β -unsaturated esters (cis-cinnamic esters), ethyl (E)-3-aryl-2-(nonafluorobutyl)sulfonyl-2-propenoates [(E)-4]. Cinnamic acids and derivatives are well recognized as useful and important building blocks in organic synthesis, $^{12-19}$ however, no stereoselective method for the preparation of 2-substituted "ciscinnamic esters (acids)" exists.

The title compounds (*E*)-4 were synthesized by the Knoevenagel condensation of ethyl (nonafluorobutyl)sulfonylacetate [ethyl (nonaflyl)acetate] (2) with various aromatic aldehydes 3 (Scheme 1). The precursor 2 was prepared by the reaction of nonaflylmethane $(1)^{20,21}$ with butyllithium in tetrahydrofuran followed by addition of diethyl carbonate. The sulfonyl ester 2 can also be prepared by reacting nonaflyl fluoride with sodiomalonic ester.²¹

The formation of a condensation product in the reaction of p-dimethylaminobenzaldehyde (3e) with 2 in acetic anhydride has been reported in the literature. However, in our hands this reaction furnished only traces of the deep yellow product (E)-4e, the main product being the recovered 2. Under the established reaction conditions that we use 10 (catalytic amounts of piperidine and anhydrous acetic acid in benzene), the condensation between activated aldehydes 3 and sulfonyl ester 2 takes place affording only the (E)-isomers 4 in good

yields. The products are stable crystalline solids, which were characterized by their spectral data (Table 1). The formation of only one isomer of the products 4 was recognized from their 1 H and 13 C NMR spectra. That they possess E-configuration was determined from the 3 J_{H,CO} coupling constant (\sim 10 Hz) of the two derivatives E-4d,e in their 13 C NMR spectra, by selectively suppressing the disturbing coupling of the H-1' protons with the C=O group.

The esters 4 were subjected to Diels-Alder reaction with 2,3dimethylbutadiene (5) and cyclopentadiene (7), respectively. As expected, 10,23 the donor-acceptor substituted sulfone ester 4c does not react with the dienes 5 and 7, but the other esters 4a,d,f and especially 4b, added readily to the dienes at room temperature with formation of the adducts 6 and 8, respectively. Among the products 6a,f and 8f are unstable (Scheme 2) and could not be isolated. The addition of (E)-**4a,b,d** to cyclopentadiene takes place with complete π -facial control syn to the nonaflyl group, yielding only exo-8a,b,d (Scheme 2). The selectivity of this reaction is higher than the one observed in the case of the corresponding nitriles (E)-9 which afforded a mixture of the exo/endo adducts (Scheme 2). 10 This fact is probably due to the higher steric demand of the COOEt in comparison with the CN-group. According to MMX force field calculations, the difference between the steric energies (Est) of the exo and endo isomers is higher in the case of the esters 8 than for the corresponding nitriles 10.

The structures of all the adducts 6 and 8 were fully confirmed by spectroscopic methods (Table 2). The configuration of *exo-8* was established by NOE experiments. Irradiation of H-7 proton at $\delta=1.63$ showed a positive NOE with the H-7' of the methylene bridge ($\delta=2.42$) and H-1 and H-4 ($\delta=3.92$ and 3.10), while no such effect was observed with the *endo-H-3* at $\delta=4.21$ (Scheme 2).

In summary, we have realized the first reliable stereoselective synthesis of ethyl (E)-3-aryl-2-(nonafluorobutyl)sulfonyl-2-propenoates [(E)-4] which proved to be a reactive class of dienophiles for the preparation of highly substituted cyclohexene and norbornene derivatives. Further studies on the reactivity of analogous chiral esters are in progress.

Table 1. Compounds 4a-f Prepared

Pro- duct ^a	Yield (%)	mp (°C)	IR (KBr) v (cm ⁻¹)	¹ H NMR (CDCl ₃ /TMS) δ, J (Hz)	13 C NMR (CDCl ₃ /TMS) 8	MS (M ⁺) m/z (%)
4a	50	39-41	1738,1607,1576,	7.94(s,1H,H-3),7.58-7.43(m,5H,Ar),	161.3, 153.1,133.3, 130.9,	458 (36)
			1375,1352,1288,	4.40(q,2H, <i>J</i> =7.2,H-1'),1.31(t,3H,	130.5, 129.3, 128.0, 63.3,	
			1238-1210,1167,	<i>J</i> =7.1,H-2')	13.6	
			1142,1117,1028,			
			758,725,689			
4b	30	72-73	1726,1612,1595,	8.32(d,2H,J=8.9,Ar),8.03(s,1H,H-3),	160.1,150.2,149.8,136.6	503 (12)
			1535,1369,1350,	7.72(d,2H,J=8.7,Ar),4.39(q,2H,	132.4,131.1,124.2,63.9	
			1240-1217,1163,	<i>J</i> =7.2,H-1'),1.31(t,3H,	13.6	
			1140,1113,1034,	<i>J</i> =7.1,H-2')		
			1018,866,853,			
			700,690			
4c	50	50-51	1734,1610,1538,	7.84(s,1H,H-3)7.59(d,2H,J=8.9,Ar),	164.2,161.1,153.1,134.1	488 (40)
			1514,1366,1277,	6.95(d,2H,J=8.9,Ar),4.40(q,2H,	124.0,123.1,114.8,63.1,	
			1231-1182,1159,	J=7.16,H-1'),3.90,(s,3H,OCH ₃),	55.6,13.7	
			1140,1115,1034,	1.34(t,3H, <i>J</i> =7.2,H-2')		
			860,835,723			
4d	46	92-93	1726,1589,1367,	7.87(s,1H,H-3),7.47(m,4H,J=9,Ar),	160.1,151.7,139.9,132.1,	492/494 (12/7
			1352,1290,1236-	4.38(q,2H,J=7.2,H-1'),1.31(t,3H,	129.7,128.8,128.5,63.5,	
			1203,1163,1142,	<i>J</i> =7.1,H-2')	13.6	
			1113,824			
4e	83	86	1711,1616,1360,	7.75(s,1H,H-3),7.09(dd,4H,J=9.1,	162.5,154.3,154.1,135.3	501 (32)
			1351,1234-1200,	Ar),4.38(q,2H,J=7.1,H-1'),3.09(s,6H,	117.9,117.6,111.5,62.6,	
			1157,1140,1113	N-(CH ₃) ₂),1.34(t,3H, <i>J</i> =7.1,H-2')	39.9,13.8	
4f	50	34-36	1738,1595,1373,	8.21(s,1H,H-3),7.15(dd,2H,J=8.1,	161.2,152.7,143.9,139.5	486 (3)
			1352,1238,1217,	Ar),7.10(s,1H,Ar),4.30(q,2H,	131.9,128.8,127.7,127.3,	
			1167,1142,1115	J=7.1,H-1'),2.39(s,3H,Ar-CH ₃),2.35	127.2,63.1,21.5,19.7,	
				(s,3H,Ar-CH ₃),1.24(t,3H,H-2')	13.6	

a Satisfactory microanalyses obtained: C ±0.36, H ±0.39. Exceptions, 4a: C-1.19, 4d: C-0.6.

Nf
$$CO_2CH_2CH_3$$
 + CCI_4 ; r.t.; 7d CI_4 ; r.t.; 4d CI_4 ; r.t.; 7d CI_4 ; r.t.; 7d

Scheme 2

Melting points were taken using a Büchi-SMP-20 apparatus and are uncorrected. All reactions were carried out under dry conditions using freshly purified solvents and substrates. Methyl nonafluorobutyl sulfone (1) was prepared according to literature procedure. 10

Ethyl (Nonafluorobutyl)sulfonylacetate 2:

To a solution of methyl nonafluorobutyl sulfone (1; 2 g, 6.7 mmol) in THF (50 mL) was added BuLi (4.2 mL, 6.7 mmol, 1,6 N in hexane) at -30°C. This solution was added dropwise to diethyl carbonate (2 g, 16.8 mmol) in THF (10 mL) at-30°C. The

Table 2. Compounds 6 and 8 Prepared

Product ^a	Yield (%)	IR (KBr) v (cm ⁻¹)	¹ H NMR (CDCl ₃ /TMS) δ, J (Hz)	¹³ C NMR (CDCl ₃ /TMS) δ	MS (M ⁺) m/z (%)
6b	100	1744,1604,1524,	8.14(d,2H, <i>J</i> =8.8,Ar),	164.5,147.6,146.6,130.4	585 (0.1)
		1373,13,46,1275,	7.50(d,2H, <i>J</i> =8.8,Ar),4.17-4.04	124.8,123.6,121.8,79.2	
		1236-1180,1161,	(m,3H,H-1'/H-6),3.03-2.35	63.3,42.2,36.2,33.2,	
		1142,1128,1114,	(m,4H,H-2/H-5),1.80(s,3H,	18.8,18.6,13.5	
		1022,858,851	H-8),1.71(s,3H,H-7),1.21		
			(t,3H, <i>J</i> =7.2,H-2')		
6d	42	1744,1373,1366,	7.27(dd,4H,J=8.1,Ar),	164.7,137.8,134.0,130.4,	575/577
		1277,1234-1200,	4.05(m,3H,H-1'/H-6),	128.8,124.7,121.7,79.3,	(0.7/0.2)
		1161,1142,1111	3.05-2.27(m,4H,H-2/H-5),	63.0,41.4,36.2,32.4,	, ,
			1.82(s,3H,H-8),1.73(s,3H,	18.8,18.7,13.5	
			H-7),1.22(t,2H,H≈7.2,H-2')		
8a	80	1740,1603,1367,	7.26-7.00(m,5H,Ar),	164.3,138.9,138.6,129.1,	524 (1.2)
		1350,1238,1161,	6.61(dd,1H, <i>J</i> =5.4/3.4,H-6),	128.3,127.9,127.4,89.7,	` .
		1142,1113,1022,	6.47(dd,1H, <i>J</i> =5.4/3.1,H-5),	62.5,53.9,51.7,49.1,	
		748,700	4.09(m,1H,J=3.4/2.0,H-1),	48.3,12.7	
			3.85-3.57(m,3H,H-1 ¹ /H-3),		
			3.05(m,1H,H-4),2.41(m,1H,		
			<i>J</i> =9.6,H-7'),1.56(m,1H, <i>J</i> =9.6,		
			H-7),0.68(t,3H, <i>J</i> =7.2,H-2')		
8b	100	1742,1601,1526,	8.05(d,2H,J=8.9,Ar),7.25(d,2H,	163.6,147.2,146.1,139.1,	570 (2)
		1366,1350,1283,	J=8.4,Ar),6.61(dd,1H, $J=5.3/3.5$,	138.8,130.1,123.0,88.8,	``
		1238,1161,1142,	H-6),6.51(dd,1H,J=5.4/3.0,H-5),	62.9,53.1,51.8,490,	
		1113,1018,868,	4.21(m,1H, J=1.4,H-1),3.94-3.73	48.2,13.0	
		852	(m,3H,H-1'/H-3),3.10(m,1H,H-4)		
			2.42(dd,1H, J=9.7,H-7'),1.63(dd,1H,		
			<i>J</i> =9.7,H-7),0.82(t,3H, <i>J</i> =7.2,H-2')		
8d	80	1742,1600,1364,	7.20-6.96(m,4H,Ar),6.59(dd,1H,	164.0,138.8,137.1,133.5,	M++1
		1350,1238,1161,	J=3.4/2.0,H-2),6.45(dd,1H,J=3.0/2.5,	130.4,128.0,119.4-110.7,	559/561
		1142,1113,1016	H-5),4.06(dd,1H, J=1.5,H-1),3.92-3.70	89.3,62.6,53.1,51.7	(0.2/0.1)
			(m,3H,H-1'/H-3),3.02(dd,1H,J=1.0/0.6,	49.0,48.1,12.7	(5.2.5.4)
			H-4),2.39(d,1H,,J=9.7,H-7'),1.57(m,1H,		
			J=9.6,H-7),0.77(t,3H,J=7.1,H-2')		

a 6d: C21H20ClF9O4S calc. C 43.08 H 3.42; found C 42.43 H 3.42. Compounds 6a, 8a, b, d are unstable and decompose easily hindering combustion analyses.

mixture was allowed to warm to r. t. and refluxed for 10 h to complete the reaction. The mixture was poured into ice and HCl (2 N, 20 mL) was added. The product was extracted with Et₂O and the organic layers dried (Na₂SO₄). The solvent was evaporated and the residue distilled under vacuum to give 2; yield: 1.09 g (44%).

3-Aryl-2-(nonafluorobutyl)sulfonyl-2-propenoates 4; General Procedure:

Ethyl (nonafluorobutyl)sulfonylacetate (2; 1.55 g, 4.2 mmol) and the aromatic aldehyde 3 (4.2 mmol) were dissolved in benzene. Piperidine (85 mg, 1 mmol) and glacial AcOH (120 mg, 2 mmol) were added. The mixture was refluxed for 2-6 h using a water trap, until no further water separates. The solvent was evaporated and the residue was taken up in Et₂O. The Et₂O layer was washed with HCl (30 mL, 1 N), several times with water and dried (Na₂SO₄). The solvent was partly removed, replaced by hexane and cooled to -20°C. The crystals formed were recrystallized from hexane/Et₂O.

Diels-Alder Adducts 8; General Procedure:

A solution of 3-aryl-2-(nonafluorobutyl)sulfonyl-2-propenoate (E)-4 (1 mmol) and the diene 5, 7 (1.2 mmol) in CCl₄ (10 mL) was stirred at r. t. for 7 d. An additional amount of the diene (1.2 mmol) was added every 2 d. The solvent was removed and the residue recrystallized from hexane (6d) or purified by preparative TLC (6b,8a, 8b, 8f).

- Permanent address: Facultad de Ciencias Quimicas Departamento de Quimica Organica I, Universidad Complutense, Ciudad Universitaria, E-28040 Madrid, Spain.
- Schank, K.; In Houben-Weyl; Georg Thieme Verlag: Stuttgart, 4th ed.; 1985; Vol. E-11, p 1275 ff.
- Patai, S.; Rappoport, Z.; Stirling, C. The Chemistry of Sulphones and Sulphoxides; Wiley: New York, 1988; p 1 ff and p 843 ff.

- Simpkins, N.S.; Sulphones in Organic Synthesis; Pergamon: Oxford, 1993.
- (5) Hendrickson, J.B.; Sternbach, D.D.; Bair, K.W. Acc. Chem. Res. 1977, 10, 306.
- (6) Glass, R.S.; Smith, D.L. J. Org. Chem. 1974, 39, 3712.
- (7) Hanack, M.; Massa, F. Tetrahedron Lett. 1977, 661.
- (8) Laping, K.; Hanack, M. F. Tetrahedron Lett. 1979, 1309.
- (9) Hanack, M.; Wilhelm, B., Subramanian, L.R. Synthesis 1988,
- (10)Hanack, M.; Bailer, G.; Hackenberg, J.; Subramanian, L. R. Synthesis 1991, 1205.
- (11)Zhu, S. Z. Synthesis, 1994, 261.
- Shono, T.; Matsumura, Y.; Fujita, T. Tetrahedron Lett. 1991, (12)
- (13)Deng, L.; Jacobsen, E. N. J. Org. Chem. 1992, 57, 4320.
- (14)Corma, A.; Iglesias, M.; Martin, M. V.; Rubio, J.; Sanchez, F. Tetrahedron Asymm. 1992, 3, 845.
- (15)Tellier, F.; Sauvêtre, R. Tetrahedron Lett. 1993, 34, 5433. (16)
- Dean, W. D.; Blum, D. M. J. Org. Chem. 1993, 58, 7916. (17)
- Buschman, E.; Schäfer, B. Tetrahedron 1994, 50, 2433. (18)
- Rath, N. P.; Spilling, C. D. Tetrahedron Lett. 1994, 35, 227. (19)
- Jeffery, T.; Galland, J.-C. Tetrahedron Lett. 1994, 35, 4103. (20)Koshar, R. J.; Mitsch, R. A. J. Org. Chem. 1973, 38, 3358.
- (21)Harzdorf, C.; Meußdoerffer, J. N.; Niederprüm, H.:
- Wechsberg, M. Liebigs Ann. Chem. 1973, 33. (22)
- Ogoiko, V. I.; Nazaretyan, V. P.; Ilchenko, A. Y.; Yagupol'skii, L. M. Zh. Org. Khim. 1980, 16, 1397.
- For example, see: Martynow, J.; Dimitroff, M.; Fallis, A. G. (23)Tetrahedron Lett. 1993, 34, 8201.