(C-10), 21.9 (C-11), 39.8 (C-12), 43.6 (C-13), 55.4 (C-14), 23.5 (C-15), 28.2 (1a) and 28.8 (2a/3a) (C-16), 56.4 (C-17), 12.3 (C-18), 13.1 (C-19), 40.7 (C-20). Glucosyl-C: 102.4 (C-1'), 75.4 (C-2'), 78.3 (C-3'), 72.0 (C-4'), 77.4 (C-5'), 63.1 (C-6').

Acknowledgements—The authors wish to express their sincere thanks to Professor W. Sucrow, Lehrgebiet Organische Chemie der Universität Paderborn, for the generous gift of authentic samples of Δ^7 -steryl acetates.

REFERENCES

- Sucrow, W., Slopianka, M. and Kircher, H. W. (1976) Phytochemistry 15, 1533.
- 2. Sucrow, W. and Reimerdes, A. (1968) Z. Naturforsch. 23b, 42.
- 3. Sucrow, W. and Girgensohn, B. (1970) Chem. Ber. 103, 750.
- 4. Sucrow, W., Schubert, B., Richter, W. and Slopianka, M. (1971) Chem. Ber. 104, 3689.
- 5. Itoh, T., Kikuchi, Y., Tamura, T. and Matsumoto, T. (1981) Phytochemistry 20, 761.

- 6. Itoh, T., Yoshida, K., Tamura, T. and Matsumoto, T. (1982) Phytochemistry 21, 727.
- 7. Sauter, M., Schilcher, H. and Segebrecht, S. (1984) Pharm. Ztg. 130, 73.
- 8. Schilcher, H. (1980) Acta Hortic. 96, 151.
- 9. Sauter, M. (1984) Dissertation, Freie Universität, Berlin.
- Mashchenko, N. E., Kintya, P. K. and Lazurévskii, G. V. (1975) Khim. Prir. Soedin. (Chem. Nat. Prod.) 5, 660.
- 11. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1977) Tetrahedron Letters 2, 179.
- 12. Konoaka, M., Yoshizaki, M. and Fujino, H. (1982) Chem. Pharm. Bull. 30, 2570.
- Itoh, T., Tani, H., Fukushima, K., Tamura, T. and Matsumoto, T. (1982) J. Chromatogr. 234, 65.
- Nes, W. R., Krevitz, K., Joseph, J., Nes, W. D., Harris, B., Gibbons, G. F. and Patterson, G. W. (1977) *Lipids* 12, 511.
- Axelos, M. and Péaud-Lenoel, C. (1982) in *Plant Carbohydrates I (Steryl Glycosides)* (Loewus, F. A. and Tanner, W., eds) p. 613. Springer, Berlin.

Phytochemistry, Vol. 24, No. 11, pp. 2748-2750, 1985. Printed in Great Britain. 0031-9422/85 \$3.00+0.00 © 1985 Pergamon Press Ltd.

A FUROSTANOL GLUCURONIDE FROM SOLANUM LYRATUM*

Shoji Yahara, Naomi Murakami, Masaki Yamasaki,† Toshiyuki Hamada, Jun-ei Kinjo and Toshihiro Nohara

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan; † Department of Biochemistry, Medical School, Kumamoto University, Honjo, Kumamoto 860, Japan

(Received 14 March 1985)

Key Word Index-Solanum lyratum; Solanaceae; furostanol glucuronide.

Abstract—A new furostanol glucuronide and three known glycosides, SL-0, aspidistrin and methyl proto-aspidistrin, were isolated from the fresh immature berries of Solanum lyratum. The structure of the new compound was characterized as $26-0-\beta$ -D-glucopyranosyl-(2ξ , 25R)- 3β , 22, 26-trihydroxyfurost-5-ene $3-0-\alpha$ -L-rhamnopyranosyl-($1 \rightarrow 2$)- $[\beta$ -D-glucopyranosyl-($1 \rightarrow 3$]- β -D-glucuronopyranoside.

INTRODUCTION

It was previously reported that a furostanol (SL-0), a spirostanol (SL-1) and two steroidal alkaloid glycosides (SL-c, SL-d) were obtained from the stems of Solanum lyratum Thunb. and their structures were elucidated [1, 2]. Our continuing study of the fresh immature berries of this plant has led to the isolation of a new steroidal glucuronide (1), which was a major component (ca 2.8 %), along with three known glycosides, SL-0 [1], aspidistrin [3] and methyl proto-aspidistrin [4]. This paper deals with the structural elucidation of compound 1.

RESULTS AND DISCUSSION

Compound 1, an amorphous powder, $[\alpha]_D - 61.4^\circ$, showed strong absorptions in the IR spectrum due to a carboxyl group (1600 cm⁻¹) and a hydroxyl group (3400 cm⁻¹), but not for a spiroketal function [5, 6] and it was positive to the Ehrlich reagent [7], suggesting a furostanol glycoside structure. Enzymic hydrolysis with almond emulsin gave a spirostanol glycoside (2) and Dglucose. Compound 2, colourless needles, mp > 300°, $[\alpha]_D - 83.4^\circ$, showed absorptions due to a carboxyl group (1600 cm⁻¹) and a characteristic spiroketal ring (920, 900, 865 cm⁻¹) in the IR spectrum, and in the FD mass spectrum the peak at m/z 937 originated from $[M + K]^+$. Acid hydrolysis of compound 2 yielded diosgenin together with rhamnose, glucose and glucuronic acid. The EI mass spectrum of the acetate of 2 showed the peaks

^{*}Part 6 in the series "Studies on the Constituents of Solanum Plants". For Part 5 see ref. [2].

Short Reports

ascribable to the peracetylated terminal hexose (m/z 331)and methylpentose (m/z 273). Compound 2 was subsequently methylated with CH₂N₂ to afford compound 3, colourless needles, mp 276–277°, $[\alpha]_{\rm D}$ – 83.4°, whose ¹³C NMR spectrum showed the presence of a methoxycarbonyl group (δ 169.8, 52.1). Reduction of compound 3 with sodium borohydride in methanol gave compound 4, colourless needles, mp 285–286°, $[\alpha]_{\rm D}$ 82.6°, in which a methoxycarbonyl signal was no longer observed in the ¹³C NMR spectrum (Table 1). The permethyl ether (5) derived from compound 4 by Hakomori's method [8] upon methanolysis furnished methyl 4,6-di-O-methyl α-D-glucopyranoside, methyl per-O-methyl α-Dglucopyranoside and methyl per-O-methyl a-Lrhamnopyranoside, together with diosgenin. Partial hydrolysis of 5 yielded 6, which was further methylated by the Kuhn method [9] to give compound 7. Methanolysis of compound 7 afforded methyl per-O-methyl a-Dglucopyranoside and methyl 2,4,6-tri-O-methyl a-Dglucopyranoside. Thus, together with substantiation of the structures for compounds 2, 3 and 4, compound 1 could be represented as $26-O-\beta$ -D-glucopyranosyl- $(22\xi, 25R)$ -3 β , 22, 26-trihydroxyfurost-5-ene 3-0-a-1rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-glucuronopyranoside. The ¹³C NMR data (Table 1) also unambiguously supported the structures for compounds 2, 3 and 4. This seems to be the first example of the isolation of a furostanol glucuronide from a natural source.

EXPERIMENTAL

General. Mps are uncorr. ¹³C NMR spectra were taken at 68.0 MHz; chemical shifts are given in δ -values with TMS as internal standard. Chromatographic columns were packed with Bondapak C₁₈ and silica gel (Merck 60) and TLC plates were precoated with silica gel (Merck 60 F₂₅₄).

Extraction and isolation. The MeOH extract of the fresh immature berries (1.4 kg) of Solanum lyratum Thunb. was coned in vacuo to give a residue, which was treated with refluxing MeOH to separate it into the soluble portion (37.7 g) and the insoluble material (77.0 g). A part (5.5 g) of the insoluble portion was subjected to Bondapak C₁₈ CC (solvent 60% MeOH) to afford compound 1 (2.8 g), whereas a part (500 mg) of the insoluble portion was chromatographed over silica gel (CHCl₃-MeOH-H₂O, 7:3:0.3) to give SL-0 (5 mg), aspidistrin (10 mg) and methyl proto-aspidistrin (25 mg).

Compound 1. An amorphous powder, R_f 0.02 (CHCl₃-MeOH-H₂O, 7:3:0.5), $[\alpha]_{2}^{D4}$ - 61.4° (H₂O; c 1.00), IR $\nu_{\text{MSF}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 1600 (COO⁻).

Enzymic hydrolysis of compound 1. A mixture of 1 (300 mg) and almond emulsin (60 mg) in H₂O (10 ml) was incubated at 40° for 10 hr and evaporated in vacuo to dryness to give a residue. The MeOH-soluble portion was subjected to Bondapak C₁₈ CC eluting with 60% MeOH to afford D-glucose and a spirostanol glycoside (2), R_f 0.11 (CHCl₃-MeOH-H₂O, 7:3:0.5), colourless needles (150 mg); mp > 300°; $[\alpha]_{24}^{24} - 83.4^{\circ}$ (pyridine, c 0.50); IR ν_{max}^{BB} cm⁻¹: 3350 (OH), 1610 (COO⁻), 920, 900 (intensity 900 > 920), 865. FDMS m/z: 937 [M + K]⁺.

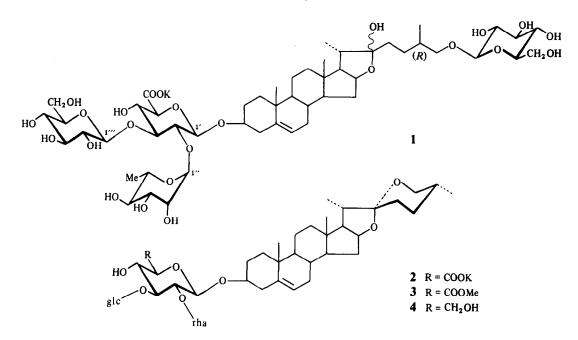

Methanolysis of compound 2. A soln of 2 (50 mg) in 2 N HCl-MeOH (15 ml) was refluxed for 2 hr, diluted with H₂O and extracted with CHCl₃. The organic layer was evaporated to give a residue, which was crystallized from Me₂CO to afford an aglycone, colourless needles (6 mg), mp 205-207°, $[\alpha]_{max}^{23}$ - 126.5° (CHCl₃; c 0.02), identical with diosgenin. IR v KBr cm⁻¹: 3350 (OH), 960, 918, 898, 863 (25R spiroketal). EIMS m/z: 415

Table 1. ¹³C NMR spectral data of compounds 2, 3 and 4 (in pyridine- d_5)

	С	2	3	4
Aglycone	1	37.4	37.4	37.5
	2	29.9	29.9	30.0
	3	78.6	78.6	78.6
	4	38.6	38.6	38.7
	5	140.9	140.6	140.7
	6	121.8	121.9	121.8
	7	32.5	32.2	32.2
	8	31.8	31.7	31.7
	9	50.2	50.3	50.2
	10	37.2	37.1	37.1
	11	21.1	21.1	21.1
	12	39.9	39.9	39.9
	13	40.5	40.5	40.5
	14	56.6	56.6	56.6
	15	32.3	32.3	32.3
	16	81.2	81.1	81.1
	17	62.3	62.3	62.4
	18	16.4	16.3	16.4
	19	19.4	19.3	19.4
	20	42.0	42.0	41.9
	21	15.1	15.0	15.0
	22	109.2	109.2	109.2
	23	31.8	31.8	31.8
	24	29.3	29.3	29.2
	25	30.6	30.6	30.6
	26	66.9	66.9	66.8
	27	17.4	17.3	17.3
Sugar moiety	1′	99.6	100.4	99.9
	2′	76.6	76.3	77.8
	3'	87.0	88.2	89.5
	4′	71.2	71.2	69.5
	5'	75.6	76.4	77.0
	6'	178.0	169.8	62.4
	1″	106.1	104.5	104.5
	2″	72.6	72.7	72.7
	3″	72.2	72.3	72.4
	4″	73.9	74.0	74.0
	5"	69.5	69.6	69.6
	6"	18.6	18.6	18.7
	1‴	104.1	102.1	102.2
	2‴	74.5	74.8	74.9
	3‴	78.2	78.2	78.4
	4‴	71.6	71.4	71.4
	5‴	77.7	78.4	77.6
	6‴	62.9	62.9	62.9
	OMe		52.1	

 $[M + 1]^+$, 139 $[C_9H_{15}O]^+$. ¹H NMR (CDCl₃): $\delta 0.77$ (3H, s, 13-Me), 1.02 (3H, s, 10-Me), 3.12-3.76 (3H, m, 3-H, 26-H₂), 4.12-4.61 (1H, m, H-16), 5.31 (1H, m, H-6). The aq. layer was neutralized, concd and examined by TLC (CHCl₃-MeOH-H₂O, 7:3:0.5) to detect the respective methylsides of glucose (R_f 0.35), rhamnose (R_f 0.61) and glucuronic acid R_f 0.15).

Methylation of compound 2 with CH_2N_2 . A soln of 2 (100 mg) in MeOH (50 ml) was treated with excess CH_2N_2 and left standing overnight in a refrigerator to give the methyl ester (3) R_f 0.47 (CHCl₃-MeOH-H₂O, 7:3:0.5), colourless needles

(85 mg), mp 276–277°, $[\alpha]_{D}^{23}$ –83.4° (pyridine; c 0.50). IR v_{MBT}^{MBT} cm⁻¹: 3400 (OH), 1725 (COOMe).

Reduction of compound 3 with NaBH₄. To a soln of 3 (80 mg) in MeOH (20 ml) NaBH₄ (30 mg) was added and the mixture left standing for 2 hr at room temp. Addition of AcOH (10 ml) and evaporation of the reaction mixture gave a residue, which was subjected to silica gel CC (CHCl₃-MeOH-H₂O, 7:3:0.3) to furnish compound 4, R_f 0.29 (CHCl₃-MeOH-H₂O, 7:3:0.5), colourless needles (55 mg), mp 285-286°, $[\alpha]_D^{22} - 82.6°$ (pyridine; c 0.50).

Methylation of compound 4. A soln of 4 (50 mg) in DMSO (3 ml) was methylated by Hakomori's method (NaH 300 mg, DMSO 5 ml, MeI 7 ml) and worked-up to yield the crude product, which was purified by silica gel CC using hexane-EtOAc, $3:1 \rightarrow 1:1$ as eluent to afford the permethyl ether (5), R_f 0.33 (hexane-Me₂CO, 2:1) as a white powder (35 mg).

Methanolysis of compound 5. The methyl ether (5 mg) was refluxed with 2 N HCl-MeOH (3 ml) for 2 hr and the reaction mixture was examined by TLC (EtOAc-MeOH, 25:1) to detect methyl-4,6-di-O-methyl α -D-glucopyranoside (R_f 0.23), methyl-2,3,4,6-tetra-O-methyl α -D-glucopyranoside (R_f 0.62) and methyl-2,3,4-tri-O-methyl α -L-rhamnopyranoside (R_f 0.74) along with diosgenin.

Partial hydrolysis of compound 4. After a soln of 5 (25 mg) in 0.5 N HCl-MeOH (4 ml) was refluxed for 1 hr, the reaction mixture was neutralized and evaporated in vacuo to dryness to give a residue, which was purified by silica gel CC using hexane-EtOAc $(3:2 \rightarrow 1:1)$ as the eluent to afford compound 6 (12 mg), R_f 0.13 (hexane-EtOAc, 1:1).

Methylation of compound 6. A mixture of 6 (10 mg), Ag₂O (90 mg), MeI (4 ml) and DMF (2 ml) was stirred overnight at

room temp. and worked-up to give the methyl ether 7 (6 mg), R_f 0.51 (hexane-EtOAc, 1:1).

Methanolysis of compound 7. A soln of 7 (5 mg) in 1 N HCl-MeOH (3 ml) was refluxed for 2 hr and the reaction mixture was checked by TLC (EtOAc-MeOH, 25:1) to reveal the presence of methyl-2,3,4,6-tetra-O-methyl- α -D-glucopyranoside (R_f 0.64) and methyl-2,4,6-tri-O-methyl- α -D-glucopyranoside (R_f 0.38).

Acknowledgements—We are grateful to Professor T. Komori and Assistant Professor R. Higuchi, Kyushu University, for the identification of the methylated sugars and for valuable discussions.

REFERENCES

- 1. Murakami, K., Saijo, R., Nohara, T. and Tomimatsu, T. (1981) Yakugaku Zasshi 101, 275.
- Murakami, K., Ejima, H., Takaishi, Y., Takeda, Y., Fujita, T., Sato, A., Nagayama, Y. and Nohara, T. (1985) Chem. Pharm. Bull. 33, 67.
- 3. Mori, Y. and Kawasaki, T. (1973) Chem. Pharm. Bull. 21, 224.
- Hirai, Y., Konishi, T., Sanada, S., Ida, Y. and Shoji, J. (1982) Chem. Pharm. Bull. 30, 3476.
- Wall, M. E., Eddy, C. R., McClennan, M. L. and Klumpp, M. A. (1952) Analyt. Chem. 24, 1337.
- Eddy, C. R., Wall, M. E. and Scott, M. K. (1953) Analyt. Chem. 25, 266.
- Kiyosawa, S., Hutoh, M., Komori, T., Nohara, T., Hosokawa, I. and Kawasaki, T. (1968) Chem. Pharm. Bull. 16, 1162.
- 8. Hakomori, S. (1964) J. Biochem. 55, 209.
- Kuhn, R., Löw, I. and Trischmann, H. (1955) Chem. Ber. 88, 1492, 1690.