POTENTIAL HYPNOTICS AND ANXIOLYTICS: 8-CHLORO-6-(2-CHLOROPHENYL)-1-|4-(2-METHOXYETHYL)-PIPERAZINO]-METHYL-4*H-s*-TRIAZOLO[4,3-*a*]-1,4-BENZODIAZEPINE AND RELATED COMPOUNDS*

Zdeněk Polívka, Jiří Holubek, Jan Metyš, Zdeněk Šedivý and Miroslav Protiva Research Institute for Pharmacy and Biochemistry, 130 60 Prague 3

Received April 7th, 1983

Ethyl esters of 4-substituted piperazinoacetic acids IIIa-f were prepared by alkylation of 1-(ethoxycarbonylmethyl)piperazine with 2-methoxyethyl bromide, 2-ethoxyethyl bromide, 2-methylthioethyl chloride, 2-phenoxyethyl bromide and 2-phenylthioethyl bromide or by reactions of 1-(3-methoxypropyl)piperazine and 1-(2-methylthioethyl)piperazine with ethyl chloroacetate. Reactions of the esters with hydrazine hydrate gave the hydrazides IVa-f. Their treatment with 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1,4-benzodiazepin-2-thione resulted in the title compound Ia and analogues Ib-f. 1-(4-Methylpiperazinomethyl) derivatives Ig and IIg were similarly prepared from 4-methylpiperazinoacetic acid hydrazide (IVg). Compound Ig showed significant central depressant and anticonvulsant (electroshock) activity in mice. The enlargement of the substituent in position 4 of the piperazine residue results in an important decrease of these activities.

In the preceding communication of this series¹ we have described the synthesis of 8-chloro-6-(2-chlorophenyl)-1-[4-(2-methoxyethyl)piperazino]-4H-s-triazolo[4,3-a]-1,4-benzodiazepine and of some related compounds out of which especially the named basic substance showed a high degree of central depressant and anticonvulsant activity in mice and resembled by its pharmacological profile the very potent anxiolytic and hypnotic agents of the type of alprazolam² and triazolam³. The aim of the present work was to investigate the influence of the insertion of one methylene group between the position 1 of the 4H-s-triazolo[4,3-a]-1,4-benzodiazepine skeleton and the nitrogen atom of the piperazine residue on the activity. For this reason, the synthesis of the title compound Ia and its analogues Ib-f has been carried out and the products were subjected to pharmacological screening for the anticonvulsant and discoordinating effects.

Out of compounds of this type with a 1-piperazinomethyl residue the literature 4,5 described only one, 8-chloro-6-phenyl-1-(4-methylpiperazinomethyl)-4H-s-triazolo-[4,3-a]-1,4-benzodiazepine (IIg), which was obtained by substitution reactions of 1-chloromethyl- (ref. 4) or 1-bromomethyl-8-chloro-6-phenyl-4H-s-triazolo-[4,3-a]-

^{*} Part XX in the series Benzocycloheptenes and Heterocyclic Analogues as Potential Drugs Part XIX: This Journal 48, 2395 (1983).

-1,4-benzodiazepine⁵ with 1-methylpiperazine. In the effort to prepare compound IIg by an alternative method we carried out an attempt at acylating 7-chloro-2-hydrazino-5-phenyl-3H-1,4-benzodiazepine⁶ with ethyl 2-(4-methylpiperazino)acetate (IIIg) (ref.^{7.8}) in boiling chloroform. The 4-methylpiperazinoacethydrazide derivative (which would be a suitable precursor for the cyclization to the triazolobenzodiazepine IIg) was not obtained at all; the only identified product, which was isolated in a rather important amount, was the symmetrically disubstituted hydrazine V.

This compound is known⁶ and it is easily formed by heating of the starting monosubstituted hydrazine. We have found an alternative and efficient synthesis of compound IIg in the reaction of 7-chloro-5-phenyl-1,3-dihydro-1,4-benzodiazepin-2-thione⁹⁻¹¹ with 2-(4-methylpiperazino)acethydrazide (IVg) (ref.^{12,13}) in boiling 1-butanol. Characterization of compound IIg was completed by recording the ¹H NMR spectrum and by preparing the fumarate. The new 1-(4-methylpiperazino)methyl analogue of triazolam Ig was prepared by a similar way, i.e. by a reaction of 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1,4-benzodiazepin-2-thione⁹⁻¹¹ with the hydrazide IVg in boiling 1-butanol.

$$R - N - CH_2COR^1$$
 $III. R^1 = OC_2H_5$
 $IV. R^1 = NH - NH_2$
 C_6H_5
 C_6H_5

Similar methods like in the synthesis of compounds Ig and IIg were then used for preparing the title compound Ia and analogues Ib-f. To this end it was necessary in the first line to prepare the corresponding piperazine intermediates IIIa-f and IVa-f which have not been described yet. The starting substance was 1-(ethoxy-carbonylmethyl)piperazine¹⁴⁻¹⁶ which was alkylated with 2-methoxyethyl bromide¹⁷,

2-ethoxyethyl bromide¹⁸, 2-methylthioethyl chloride¹⁹, 2-phenoxyethyl bromide²⁰ and 2-phenylthioethyl bromide²¹ in boiling acetone in the presence of potassium carbonate (method A). There resulted the 4-substituted ethyl piperazinoacetates IIIa and IIIc-f which were characterized by spectra and in the case of compound IIIa also by a crystalline salt. In two cases the reversed approach was used: 1-(3--methoxypropyl)piperazine¹ and 1-(2-methylthioethyl)piperazine¹ were treated with ethyl chloroacetate in boiling ethanol in the presence of sodium hydrogen carbonate (method B); the piperazinoacetates IIIb and IIId were obtained. The esters IIIa-fafforded by reactions with 100% hydrazine hydrate in boiling ethanol (method C) the hydrazindes IVa-f which were characterized partly in the form of salts, partly by spectra. Their preparation was accompanied by the formation of small amounts of higher melting by-products, evidently the corresponding N,N'-diacylhydrazines²². Compound VI of this type was isolated in the case when we attempted to distill the crude 2-[4-(2-phenoxyethyt)piperazino]acethydrazine (1Ve). Decomposition took place and the product VI was isolated as a crystalline tetramaleate. Crystallization of the dimaleate of the hydrazide IVf from acetone afforded the dimaleate of the isopropylidenehydrazide VII.

Reactions of 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1,4-benzodiazepin-2-thione (ref. $^{9-11}$) with hydrazides IVa-f in boiling 1-butanol (method D) afforded the final products Ia-f. The crude products were purified by chromatography on silica gel and their structures were corroborated by spectra (especially the 1H NMR spectra). All of the bases Ia-f afforded by neutralization with fumaric acid the fumarates with the ratio of 2 molecules of the base per 3 molecules of fumaric acid (sesquifumarates) which were used for pharmacological tests. Compounds Ia-f and the intermediates IIIa-f and IVa-f are assembled in Table I with the usual experimental data. The Experimental contains then only examples of the preparations carried out by the general methods A-D.

TABLE I 8-Chloro-6-(2-chlorophenyl)-1-(piperazinomethyl)-4H-s-triazolo[4,3-a]-1,4-benzodiazepines (Ia to f) and Intermediates IHa-f and IVa-f

Compound	Method	M.p., °C (Solvent) or b.p., °C/kPa	Formula (mol. wt.)	Calculated/Found		
	(yield, %)			% C	% Н	% N
IIIa	A ^a (44)	120-130/0.36	$C_{11}H_{22}N_2O_3$ (230-3)	57·36 57·62	9·63 9·67	12·16 12·36
IIIa-2 HM ^b		144-145 (ethanol)	C ₁₉ H ₃₀ N ₂ O ₁₁ (462·4)	49·34 49·64	6·54 6·60	6·06 5·84
IIIb	B ^c (82)	124-126/0.4	C ₁₂ H ₂₄ N ₂ O ₃ (244·3)	58·99 58·31	9·90 9·89	11·47 11·45
IIIc	A (45)	120-122/0.3	C ₁₂ H ₂₄ N ₂ O ₃ (244·3)	58·99 58·76	9·90 9·84	11·47 12·19
IIId	B^d (60)	130-132/0.27	$C_{11}H_{22}N_2O_2S$ (246·4)	53·62 54·19	9·00 9·00	11·37 11·34
IIIe	A (53)	$160 - 165/0 \cdot 4^e$	C ₁₆ H ₂₄ N ₂ O ₃ (292·4)	65·73 65·15	8·27 8·37	9·58
IIIf	A (38)	$170 - 175/0 \cdot 4^f$	$C_{16}H_{24}N_2O_2S^g$ (308·4)	62·30 62·65	7·84 7·68	9·08
IVa-3 M ^h	C ⁱ (80)	126-127 (methanol)	C ₂₁ H ₃₂ N ₄ O ₁₄ (564·5)	44·68 44·22	5·71 5·63	9·93 9·71
IVb-3 M ^h	C ^j (80)	108-110 (ethanol)	C ₂₂ H ₃₄ N ₄ O ₁₄ (578·5)	45·67 45·73	5·92 6·14	9·69 9·24
IVc-3 M ^h	C^k (45)	120-123 (ethanol)	C ₂₂ H ₃₄ N ₄ O ₁₄ (578·5)	45·67 45·58	5·92 6·09	9·69 9·98
IVd	C ^a (91)	79-81 (ethanol)	$C_9H_{20}N_4OS^l$ (232·3)	46·52 46·39	8·68 8·73	24·12 24·72
IVd-3 M ^h		119-121 (ethanol)	$C_{21}H_{32}N_4O_{13}S^m$ (580·6)	43·44 43·75	5·56 5·62	9·65 8·89
IVe	C (56)	$83.5 - 84.5^n$ (benzene-hexane)	C ₁₄ H ₂₂ N ₄ O ₂ (278·3)	60·41 60·26	7·97 8·02	20·13 20·49
IVf	C (70)	81 – 82° (benzene-light petroleum)	$C_{14}H_{22}N_4OS^p$ (294·4)	57·11 56·72	7·53 7·56	19·03 18·94
<i>Ia</i> -1·5 F ^q	D ^r (57)	213-216 ^s (aqueous ethanol)	$C_{24}H_{26}Cl_2N_6O^t + 1.5 C_4H_4O_4$ (659.6)	54·64 54·82	4·89 4·83	12·74 12·83
Ia-2 OxH ^u		207-210 (aqueous ethanol)	$C_{28}H_{30}Cl_2N_6O_9^v + H_2O_{(683\cdot5)}$	49·21 49·73	4·72 4·52	12·30 12·20

TABLE I
(Continued)

Compound	Method (yield, %)	M.p., °C (Solvent) or b.p., °C/kPa	Formula (mol. wt.)	Calculated/Found		
				% C	% H	% N
<i>Ib</i> −1·5 F ^q *	D	233-236 ^w	$C_{25}H_{28}Cl_2N_6O^x$	55.28	5.09	12.48
	(96)	(aqueous ethanol)	$+ 1.5 C_4 H_4 O_4$ (673.6)	55.24	5.19	12-46
Ic-1·5 F ^q	D	$194 - 195^{y,z}$	C,5H,8Cl,N6Oaa	55.28	5.09	12.48
	(74)	(aqueous ethanol)	$+\ \frac{1.5\ C_4 H_4 O_4}{(673.6)}$	55.27	5.14	12.46
Id	D^a	158 - 160	$C_{24}H_{26}Cl_2N_6S^{bb}$	57-48	5.23	16.76
	(95)	(ethanol)	(501.5)	57.30	5.32	17.10
<i>Id</i> -1·5 F ^q		$218 - 222^{y}$	$C_{24}H_{26}Cl_2N_6S^{cc}$	53-33	4.77	12.44
		(aqueous ethanol)	1·5 C ₄ H ₄ O ₄ (675·6)	53.33	4.82	12.62
Ie-1·5 F ^q	D	$167 - 170^{dd}$	C,9H,8Cl,N6Oee	58.26	4.75	11.65
	(95)	(ethanol-ether)	+ 1·5 C ₄ H ₄ O ₄ (721·6)	58-35	4.83	11.76
<i>If</i> -1·5 F ^q	D	$206 - 208^{ff}$	$C_{29}H_{28}Cl_2N_6S^{gg}$	56.99	4.65	11.39
	(27)	(aqueous ethanol)	+ 1·5 C ₄ H ₄ O ₄ (737·7)	57.31	4.66	11.25

^a See Experimental. ^b Di(hydrogen maleate). ^c IR spectrum (CHCl₃)· 1 030, 1 165, 1 298 (C—O in ester), 1110 (R-OR'), 1735 (C-O of ester), 2820 cm⁻¹ (CH₂-N); ¹H NMR spectrum δ 4·17 (q, J = 7.0 Hz, 2 H, COOCH₂), 3·46 (t, J = 7.0 Hz, 2 H, CH₂O in ethoxyl), 3·49 (q, J = 7.0 Hz, 2 H. remaining CH₂N), 3.18 (s, 2 H. NCH₂O), 2.58 (bs, 8 H, 4 CH₂N of piperazine), 2.50 (t, 2 H, remaining CH₂N), 1.25 (t, 3 H, CH₃ in ester ethoxyl), 1.18 (t, 3 H, CH₃ in ether ethoxyl). Was prepared also using method A in a yield of only 14%, b.p. 140-142°C/0·33 kPa. ^e IR spectrum (CHCl₃): 1 030, 1 170, 1 300 (C—O in ester), 1 240 (Ar—O—R), 1 735 (C—O in ester), 2 820 cm⁻¹ (CH₂-N); ¹H NMR spectrum δ 6.70-7.40 (m, 5 H, C₆H₅), 4.16 (q, J = = 7.0 Hz, 2 H, COOCH₂), 4.08 (t, J = 7.0 Hz, 2 H, ArOCH₂), 3.19 (s, 2 H, NCH₂CO), 2.80 (to MeV)(t, 2 H, CH₂N outside of piperazine), 2.60 (bs, 8 H, 4 CH₂N of piperazine), 1.25 (t, 3 H, CH₂ in ethyl). ^f IR spectrum (CHCl₃): 1 165 (C—O in ester), 1 477, 1 580 (Ar), 1 740 (C—O in ester. 2 818 cm⁻¹ (CH₂-N); ¹H NMR spectrum δ 7·20 (m, 5 H, C₆H₅), 4·18 (q, 2 H, COOCH₂), 3.20 (s, 2 H, NCH₂CO), 3.02 (t, 2 H, CH₂S), c. 2.60 (m, 10 H, remaining 5 CH₂N), 1.25 (t, 3 H, CH₃). ^g Calculated: 10.40% S; found: 10.26% S. ^h Trimaleate. ⁱ The crude base was distilled, b.p. 160-163°C/0.26 kPa; the distillate crystallized to a low-melting solid. J The crude base melted at 68-70°C (benzene-light petroleum). * The crude base was distilled, b.p. 140-147°C/ /0.27 kPa; the distillate crystallized to a low-melting solid. ¹Calculated: 13.80% S; found: 13.50% S. ^m Calculated: 5.52% S; found: 5.47% S. ⁿ IR spectrum: 691, 755 (5 adjacent Ar—H), 1 005, 1 035, 1 165, 1 248 (Ar—O—R), 1 472, 1 490, 1 500, 1 582, 1 598, 3 020, 3 038, 3 050 (Ar), 1 535, 1 658, 1 677 (CONH), 2 785, 2 815 (ArOR, N-CH₂), 3 180, 3 290, 3 382 cm⁻¹ (NH₂, NH); ¹H NMR spectrum: δ 8·15 (bs, 1 H, CONH), 6·80–7·50 (m, 5 H, C₆H₅), 4·12 (t, J = 6.0 Hz, 2 H, CH₂O), 3.90 (bs. 2 H, NH₂), 3.12 (s, 2 H, NCH₂CO), 2.85 (t, J = 6.0 Hz, 2 H, CH₂N

Table I
(Continued)

outside of piperazine), 2.64 (s, 8 H, 4 CH₂N of piperazine). O IR spectrum: 690, 740 (5 adjacent Ar-H), 1 532, 1 575, 1 665 (CONH), 2 767, 2 813 (CH₂-N), 3 163, 3 250, 3 295 cm⁻¹ (NH, and NH); ¹H NMR spectrum: δ 8·12 (bs, 1 H, NH), 7·10–7·50 (m, 5 H, C₆H₅), 3·88 (bs, 2 H, NH₂), 3.08 (s, 2 H, NCH₂CO), 3.05 (m, 2 H, CH₂S), 2.65 (m, 2 H, CH₂N outside of piperazine), 2.54 (s, 8 H, 4 CH₂N of piperazine). P Calculated: 10.89% S; found: 10.68% S. q Sesquifumarate. The base was released from the salt and used for recording the ${}^{1}H$ NMR spectrum: δ 8.50 (d, J = 8.5 Hz, 1 H, 10-H), 7.20 - 7.70 (m, 5 H, 9-H and 4 ArH of chlorophenyl), 7.18 (d, J == 2.0 Hz, 1 H, 7-H), 5.55 and 4.20 (ABq, J = 13.0 Hz, 1 + 1 H, 4.4-H₂), 3.80 and 3.50 (ABq, $J = 13.0 \text{ Hz}, 1 + 1 \text{ H}, 1 \text{-CH}, -N), 3.55 (t, 2 \text{ H}, \text{CH}, \text{O}), 3.40 (s, 3 \text{ H}, \text{CH}_3\text{O}), c. 2.60 (bm.)$ 10 H, 5 CH₂N). S Mass spectrum, m/z (%): 484 (M⁺ corresponding to $C_{24}H_{26}Cl_2N_6O$), 127 (25), 114 (58), 111 (100), 97, 95 (93), 69 (31), 56 (38). Calculated: 10·75% Cl; found: 11·00% Cl. "Dioxalate monohydrate, "Calculated: 10.38% Cl; found: 10.33% Cl, "The base was released from the salt and used for recording the spectra; IR spectrum: 748, 830, 887 (4 and 2 adjacent and solitary Ar—H), 1 480, 1 530, 1 564 (Ar), 1 610 cm⁻¹ (Ar—C=N); ¹H NMR spectrum δ 8·49 (d, J = 8.5 Hz, 1 H, 10-H), 7·20-7·70 (m, 5 H, 9-H and 4 ArH of chlorophenyl), 7·16 (d, $J = 2.0 \,\mathrm{Hz}$, 1 H, 7-H), 5.55 and 4.20 (ABq, $J = 13.0 \,\mathrm{Hz}$, 1 + 1 H, 4.4-H₂), 3.80 and 3.60 (ABq, J = 13.0 Hz, 1 + 1 H, 1-CH₂N), 3.41 (t, J = 7.0 Hz, 2 H, CH₂O), 3.32 (s, 3 H, CH₂O). 2.50 (bm, 10 H, remaining 5 CH₂N), 1.85 (bm, 2 H, CH₂ in the middle of the propane chain). x Calculated: 10.53% Cl; found: 10.68% Cl. y With decomposition. The base was released from the salt and used for recording the ${}^{1}H$ NMR spectrum: δ 8·49 (d, J=8.5 Hz, 1 H, 10-H), 7·30 to 7.80, m, 5 H, 9-H and 4 Ar-H of chlorophenyl), 7.18 (d, J = 2.0 Hz, 1 H, 7-H), 5.55 and 4.20 (ABq, J = 13.0 Hz, 1 + 1 H, $4.4-H_2$), 3.80 and 3.60 (ABq, J = 13.0 Hz, 1 + 1 H, $1-CH_2-N_2$). c. 3.50 (m, 4 H, CH₂OCH₂), c. 2.60 (m, 10 H, remaining 5 CH₂N), 1.20 (t, J = 7.0 Hz, 3 H. CH₂), and Calculated: 10.53% Cl; found: 10.90% Cl. bb Calculated: 14.14% Cl. 6.39% S; found: 14·32% Cl, 6·60% S. cc Calculated: 10·50% Cl, 4·75% S; found: 10·62% Cl, 5·00% S. dd The base was released from the salt and used for recording the spectra; UV spectrum: λ_{max} 221 nm (log ε 4.67), inflexes at 251 nm (4.00) and 270 nm (3.52); IR spectrum: 690, 752, 815, 830, 885 (5, 4 and 2 adjacent and solitary Ar-H), 1 230 (Ar-O-R), 1 486, 1 531, 1 569, 1 585, 1 599 (Ar), 1 614 $(A_f - C = N)$, 2 770, 2 810 cm⁻¹ (ArOR, CH₂-N); ¹H NMR spectrum: $\delta 6.80 - 7.70$ (m, 12 H, ArH), 5·60 and 4·20 (ABq, J = 13·0 Hz, 1 + 1 H, 4,4-H₂), 4·15 (t, J = 6·0 Hz, 2 H, OCH₂). 3.85 and 3.58 (ABq, J = 13.0 Hz, 1 + 1 H, 1-CH₂-N), 2.85 (t, J = 6.0 Hz, 2 H, CH₂N outside of piperazine), 2.68 (bm, 8 H, 4 CH₂N of piperazine). ee Calculated: 9.83% CI; found: 9.84% CI. ff The base was released from the salt and used for recording the spectra; IR spectrum: 695. 752, 838, 895 (5, 4 and 2 adjacent and solitary Ar-H), 1 490, 1 535, 1 568, 1 582, 3 040 (Ar). 1 614 (Ar—C=N), 2 785, 2 820 cm⁻¹ (CH₂-N); ¹H NMR spectrum: δ 8·45 (d, J = 8.5 Hz. 1 H, 10-H), $7 \cdot 10 - 7 \cdot 70$ (m, 11 H, remaining ArH), $5 \cdot 58$ and $4 \cdot 20$ (ABq, $J = 13 \cdot 0$ Hz, 1 + 1 H. 4,4-H₂), 3·80 and 3·50 (ABq, J = 13.0 Hz, 1 + 1 H, 1-CH₂—N), 2.40 - 3.20(m, 12 H, 4 CH₂N of piperazine and SCH₂CH₂N). ⁹⁹ Calculated: 9.61% Cl, 4.35% S; found: 9.67% Cl, 4.63% S.

Compounds Ia - g and Ilg in the form of fumarates were subjected to a preliminary pharmacological evaluation in mice using oral administration (all doses in mg/kg). The acute toxicity (LD₅₀) has been determined only with three compounds: Ia, 721: Ig, 635 (starting with a dose of 200 mg/kg a strong sedation of the animals in the experiment takes place; the toxic symptoms are convulsive twitches and ataxia); Ilg.

c. 1 000. Assuming a possible considerable discoordinating effect in the rotarod test the compounds Ia-f were administered in a dose of 1 mg/kg. They appeared, however, to be almost inactive under these conditions (ataxia in 10-20% of the animals at the maximum). For the most active compound Iq the medium effective dose was determined; $ED_{50} = 25.9 \text{ mg/kg}$. Compound Hg was administered in this test in a dose of 30 mg/kg which only exceptionally brought about ataxia. The central depressant effect manifested by the inhibition of the locomotor activity, evaluated by the photo-cell method of Dews, was estimated only with two compounds; compound Iq in a dose of 10 mg/kg inhibited the locomotor activity very intensively (to 30% of the control value); compound IIq brings about a statistically significant inhibition in this test only in a relatively high dose of 50 mg/kg (a dose of 10 mg/kg is practically without effect). The anticonvulsant activity towards pentetrazole was evaluated likewise only with the just two mentioned compounds: Iq, a dose of 1 mg/kg lacks any protective effect towards the convulsant action but it decreases significantly the toxicity of pentetrazole; IIq, a dose of 10 mg/kg is inactive towards pentetrazole. All compounds were tested for the protective action towards convulsions elicited by electroshock. In this test compounds Ia - f were administered in a dose of 1 mg/kg. Compounds Ia and Ib showed signs of effect but the dose given protected less than 50% animals in the experiment. Compounds Ic-f were practically inactive. For the most active compound Ig the medium protective dose was determined; $PD_{50} =$ = 1.23 mg/kg. Compound IIq was inactive in a dose of 50 mg/kg. In comparison with triazolam^{3,11}, even the most active compound of our series (Ig) is thus in all tests used less active approximately by two degrees of magnitude. When enlarging the N-substituent (Ia-f) and with the absence of the atom of chlorine in the o-position of the 6-phenyl (IIg) the activity continues to decrease.

Evaluation of the antimicrobial activity (Dr J. Turinová and Dr V. Holá, bacteriological department of this institute) showed signs of inhibitory effects of some compounds towards some microorganisms (numbers of compounds and the minimum inhibitory concentrations in $\mu J/ml - unless$ they exceed $100 \, \mu J/ml - are given)$: Streptococcus faecalis, Ie 100; Staphylococcus pyogenes aureus, Ie 100, If 25; Trichophyton mentagrophytes, Ia 50, If 50, IIg 50. All compounds were inactive in concentrations of $50 - 100 \, \mu J/ml$ towards Streptococcus β -haemolyticus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Saccharomyces pasterianus, Candida albicans and Aspergillus niger.

EXPERIMENTAL

The melting points of analytical samples were determined in Kofler's block and are not corrected; the samples were dried in vacuo of about 60 Pa over P_2O_5 at room temperature or at 77 °C. The UV spectra (in methanol) were recorded with a Unicam SP 8000 spectropohtometer, the IR spectra (in Nujol unless stated otherwise) with a Unicam SP 200G spectrophotometer, the ¹H NMR spectra (mostly in C^2HCl_3) with a Tesla BS 487C (80 MHz) spectrometer and the mass spectra with MCH-1320 and Varian MAT 44S spectrometers. The homogeneity of the compounds and composition of the reaction mixtures and crude products were checked by thin-layer chromato-

graphy on silica gel (Silufol). The preparative separations were carried out on columns of silica gel (Merck 60).

8-Chloro-6-(2-chlorophenyl)-1-(4-methylpiperazino)methyl-4*H-s*-triazolo[4,3-*a*]-1,4-benzodiazepine (*Ia*)

A mixture of 6.4 g 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1,4-benzodiazepin-2-thione 9-11, 3.45 g 2-(4-methylpiperazino)acethydrazide (IVg) (ref. 12.13) and 80 ml 1-butanol was stirred and refluxed for 8 h. After standing overnight the mixture was heated with charcoal, filtered and butanot was evaporated in vacua. The residue was dissolved in 50 ml benzene, the solution was filtered through a column of 40 g neutral Al₂O₃ (activity II) which was washed with 160 ml benzene. Evaporation of the filtrate gave 8.2 g crude oily product which crystallized slowly from a solution in 20 ml benzene to which 10 ml hexane were added. After 2 days standing in a refrigerator the product was filtered, washed with hexane and dried; 5:0 g (57%), m.p. 173-175°C. Analytical sample, m.p. 175-176°C (benzene-hexane). IR spectrum (KBr): 755, 770, 826, 833, 895 (4 and 2 adjacent and solitary Ar-H), 1 490, 1 540, 1 570 (Ar), 1 610 (Ar-C=N), 2 725, 2 748, 2 780, 2.790 cm⁻¹ (CH₃-N, CH₂-N). ¹H NMR spectrum (C²H₃SOC²H₃): δ 8·36 (d, J = 9.0 Hz, 1 H, 10-H), 7.30 - 8.00 (m, 5 H, 9-H and 4 ArH of chlorophenyl), 7.11 (d, J = 2.5 Hz, 1 H, 7-H), 5.31 and 4.31 (ABq, J = 13.0 Hz, 1 + 1 H, 4.4-H₂), 3.90 and 3.60 (ABq, J = 14.0 Hz, 1 + 1 H, 1-CH₂—N), 2.55 (bm, 4 H, CH₂N¹CH₂ of piperazine). 2.46 (bm, 4 H, CH₂N⁴CH₂ of piperazine), 2·19 (s, 3 H, NCH₃). For C₂₂H₂₂Cl₂N₆ (441·4) calculated: 59·87% C, 5·02% H, 16·07% Cl, 19·04% N; found: 59·24% C, 5·13% H, 16·30% Cl, 18·76% N.

Sesquifumarate, m.p. $220-225^{\circ}$ C with decomposition (aqueous ethanol). For $C_{22}H_{22}Cl_2N_6+1.5$ $C_4H_4O_4$ (615·5) calculated: $54\cdot64\%$ C, $4\cdot59\%$ H, $11\cdot52\%$ Cl. $13\cdot66\%$ N; found: $54\cdot73\%$ C, $4\cdot79\%$ H, $11\cdot38\%$ Cl, $13\cdot80\%$ N.

Oxalate sesquihydrate, m.p. $207-209^{\circ}C$ with decomposition (aqueous ethanol). For $C_{24}H_{24}$. $Cl_{2}N_{6}O_{4}+1.5~H_{2}O$ (558-4) calculated: 51.62%~C, 4.87%~H, 12.70%~Cl, 15.05%~N; found: 51.66%~C, 4.57%~H, 12.37%~Cl, 14.61%~N.

8-Chloro-1-(4-methylpiperazino)methyl-6-phenyl-4*H-s*-triazolo[4,3-a]-1,4-benzodiazepine (*IIa*)

A mixture of 2·9 g 7-chloro-5-phenyl-1,3-dihydro-1,4-benzodiazepin-2-thione $^{9.11}$, 1·7 g 2·(4-methylpiperazino)acethydrazide (IVg) (ref. $^{12.13}$) and 50 ml butanol was refluxed for 4 h, allowed to stand overnight and evaporated under reduced pressure. The residue was dissolved in 30 ml ethanol, the solution was filtered with charcoal and evaporated. Crystallization of the residue from a mixture of 15 ml ethanol and 15 ml cyclohexane and processing of the mother liquor gave 3·1 g (72%) IIg, m.p. $201-205^{\circ}$ C. 1 H NMR spectrum: δ 8·38 (d, J = 8·0 Hz, 1 H, 10-H), 7·20 to 7·70 (m, 7 H, 7·9-H₂ and C_6H_5), 5·48 and 4·08 (ABq, J = 12·0 Hz, 1 + 1 H, 4·4-H₂), 3·81 and 3·53 (ABq, J = 13·0 Hz, 1 + 1 H, 1-CH₂—N), 2·20-2-90 (m, 8 H, 4 CH₂N of piperazine), 2·25 (s, 3 H, NCH₃). Lif. $^{4.5}$ m.p. $294-205^{\circ}$ C, and $203-208^{\circ}$ C, respectively.

Fumarate, m.p. $145-149^{\circ}$ C with decomposition (ethanol–ether). For $C_{26}H_{27}ClN_6O_4$ (523·0) calculated: $59\cdot71\%$ C, $5\cdot20\%$ H, $6\cdot78\%$ Cl, $16\cdot07\%$ N; found: $58\cdot91\%$ C, $5\cdot18\%$ H, $7\cdot09\%$ Cl, $15\cdot51\%$ N.

Ethyl 2-[4-(2-Methoxyethyl)piperazino]acetate (IIIa) (Method A)

A mixture of 25.8 g 1-(ethoxycarbonylmethyl)piprazine $^{14-16}$, 23.5 g 2-methoxyethyl bromide 17 20.6 g $\rm K_2CO_3$ and 150 ml acetone was stirred and refluxed for 6 h. After standing overnight the solid was filtered off and washed with acetone. The filtrate was evaporated, the oily residue diluted

with 100 ml benzene and the solution was washed with water, dried with K_2CO_3 , filtered with charcoal and distilled; 15·0 g (44%), b.p. 120–130°C/0·36 kPa. For analysis a sample was redistilled, b.p. 95–98°C/70 Pa. IR spectrum (CHCl $_3$): 1 030, 1 168, 1 300 (C—O of ester), 1 112 (R—O—R'), 1 735 (C=O of ester), 2 820 cm $^{-1}$ (CH $_2$ —N). ¹H NMR spectrum: δ 4·18 (q, J = 7·0 Hz, 2 H, COOCH $_2$), 3·49 (t, J = 7·0 Hz, 2 H, the remaining OCH $_2$), 3·32 (s, 3 H, OCH $_3$), 3·18 (s, 2 H, NCH $_2$ CO), 2·58 (bs. 8 H, 4 NCH $_2$ 0 of piperazine), 2·49 (t, J = 7·0 Hz, 2 H, CH $_2$ N of methoxyethyl), 1·25 (t, J = 7·0 Hz, 3 H, CH $_3$ 0 of ethyl). Di(hydrogen malcate), m.p. 144–145°C (ethanol). The analyses in Table I.

Ethyl 2-[4-(3-Methoxypropyl)piperazino]acetate (IIIb) (Method B)

A stirred mixture of 20 g 1-(3-methoxypropyl)piperazine 1 , 40 ml ethanol and 19 g NaHCO $_3$ was treated dropwise over 20 min at 50°C with a solution of 12·2 g ethyl chloroacetate in 40 ml ethanol. The mixture was then stirred and refluxed for 16 h. Ethanol was evaporated, the residue was diluted with 50 ml water and extracted with chloroform. The extract was washed with water, dried with MgSO $_4$ and distilled; 20 g (82%), b.p. 124–126°C/0·4 kPa. IR spectrum (CHCl $_3$): 1010, 1030, 1164, 1295 (C—O of ester), 1112 (R—O—R'), 1735 (C—O of ester), 2820 cm $^{-1}$ (CH $_2$ —N). ¹H NMR spectrum: δ 4·18 (q, J= 7·0 Hz, 2 H, COOCH $_2$), 3·39 (t, J= 7·0 Hz, 2 H, remaining OCH $_2$), 3·30 (s, 3 H, OCH $_3$), 3·18 (s, 2 H, NCH $_2$ CO), 2·55 (bs, 8 H, 4 NCH $_2$ CO) piperazine), 2·40 (t, 2 H, CH $_2$ N of methoxypropyl), 1·85 (bm, 2 H, CH $_2$ in the middle of the propane residue), 1·25 (t, J= 7·0 Hz, 3 H, CH $_3$ of ethyl). The analysis in Table I.

2-[4-(2-Methylthioethyl)piperazino]acethydrazide (IVd) (Method C)

A stirred solution of 1·7 g 100% N_2H_4 - H_2O in 7 ml ethanol was treated dropwise over 15 min with a solution of 7·4 g IIId in 8 ml ethanol and the mixture was refluxed for 8 h. After standing overnight at room temperature a solid by-product (0·9 g, m.p. 145—153°C) was filtered off and the filtrate was evaporated; 6·4 g (91%), m.p. $68-72^{\circ}C$. Analytical sample, m. p.79—81°C (ethanol), IR spectrum (KBr): 1532, 1579, 1663 (CONH), 2 760, 2 800 (CH₂—N), 3 160, 3 210, 3 285 cm⁻¹ (NH₂ and NH). 1 H NMR spectrum (2 H₃SOC 2 H₃): δ 8·85 (bs, 1 H, NH), 4·20 (bs, 2 H, NH₂), 2·95 (s, 2 H, NCH₂CO), 2·54 (s, 4 H, SCH₂CH₂N), 2·45 (s, 8 H, 4 CH₂N of piperazine), 2·10 (s, 3 H, SCH₃). Tri(hydrogen malcate), m.p. 119—121°C (ethanol), Analyses in Table I.

N,N'-Bis[4-(2-phenoxyethyl)piperazinoacetyl]hydrazine (VI)

A solution of 5·35 g 100% N_2H_4 . H_2O in 25 ml ethanol was stirred and treated with a solution of 27·5 g \emph{HIe} in 25 ml ethanol and the mixture was refluxed for 8 h. Ethanol was evaporated and it was attempted to distill the residue. There were signs of decomposition, the heating was discontinued and the crude product (18 g) was neutralized with 30 g maleic acid in 80 ml ethanol; 41 g tetra(hydrogen maleate) of \emph{VI} , m.p. 144—146°C (ethanol). For $C_{44}H_{56}N_6O_{20}$ (989·0) calculated: 53·43% C, 5·71% H, 8·50% N; found: 52·92% C, 5·78% H, 8·42% N.

N-Isopropylidene-2-[4-(2-phenylthioethyl)piperazino]acethydrazide (VII)

IVd (0.6 g) was neutralized with 0.71 g maleic acid in 8 ml ethanol and the precipitated maleate was crystallized from acetone; dimaleate of VII, m.p. 135–138°C. Mass spectrum, m/z: 335 (M⁺ corresponding to $C_{17}H_{26}N_4OS$), 334, 333, 332, 235, 225 ($C_{11}H_{21}N_4O$), 211 ($C_{10}H_{19}N_4O$, 100%), 137, 111, 99, 98, 97, 70, 58, 56, 55. For $C_{25}H_{34}N_4O_8$ S (566·6) calculated: 52-99% C, 6·05% H, 9·89% N, 5·66% S; found: 52-60% C, 6·02% H, 9·79% N, 6·14% S.

8-Chloro-6-(2-chlorophenyl)-1-[4-(2-methylthioethyl)piperazino]methyl-4*H-s*-triazolo[4,3-*a*]-1,4-benzodiazepine (*Id*) (Method *D*)

A mixture of 6·4 g 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1,4-benzodiazepin-2-thione $^{9-11}$, 5·8 g IId and 70 ml 1-butanol was stirred and refluxed for 10 h. After standing overnight butanol was evaporated in vacuo and the residue was chromatographed on a column of 60 g silica gel. Elution with benzene removed 0·3 g starting thione. Continued elution with chloroform and chloroform containing 2% methanol resulted then in 9·6 g (95%) crude oily base Id which crystallized from ethanol, m.p. 158-160°C. UV spectrum: inflex at 248 mn (log e 4·11). IR spectrum: 750, 834, 848, 880 (4 and 2 adjacent and solitary Ar—H), 1485, 1 540, 1 565, 1 588 (Ar), 1 610 (Ar—C=N), 2 810 cm $^{-1}$ (CH $_2$ —N). 1 H NMR spectrum: δ 8·50 (d, J= 8·5 Hz, 1 H, 10-H), 7:30-7·70 (m, 5 H, 9·H and 4 ArH of chlorophenyl), 7·20 (d, J= 2·5 Hz, 1 H, 7-H), 5·60 and 4·25 (ABq, J= 13·0 Hz, 1 + 1 H, 4·4·H $_2$), 3·82 and 3·55 (ABq, J= 13·0 Hz, 1 + 1 H, 1·CH $_2$ —N), 2·60 (m, 12 H, 4 CH $_2$ N of piperazine and SCH $_2$ CH $_2$ N), 2·18 (s, 3 H, SCH $_3$). Sesquifumarate, m.p. 218-222°C with decomposition (aqueous ethanol). Analyses in Table 1

The authors are indebted to Drs E. Swåtek, M. Ryska, I. Koruna and Mrs A. Hrádková (Physicochemical department of this institute) for the spectral data and to Mrs J. Komancová and Mrs V. Smidová (Analytical department) for carrying out the analyses.

REFERENCES

- Polivka Z., Ryska M., Holubek J., Svátek E., Metyš J., Protiva M.: This Journal 48, 2395 (1983).
- Castañer J., Chatterjee S. S.: Drugs Future 1, 551 (1976); 2, 826 (1977); 4, 904 (1979); 6, 788 (1981).
- 3. Pakes G. E., Brogden R. N., Heel R. C., Speight T. M., Avery G. S.: Drugs 22, 81 (1981).
- 4. Hester J. B. jr, Rudzik A. D., VonVoigtlander P. F.: J. Med. Chem. 23, 392 (1980).
- Meguro K., Kuwada Y. (Takeda Chemical Industries, Ltd.): Ger. Offen. 2 159 242 (Japan Appl. 11. 12. 70); Chem. Abstr. 78, 72 239 (1973).
- 6. Meguro K., Kuwada Y.: Chem. Pharm. Bull. 21, 2 375 (1973).
- Morren H., Trolin S., Denayer R., Grivsky E.: Bull. Soc. Chim. Belg. 59, 228 (1950); Chem. Abstr. 45, 6 210 (1951).
- Zaugg H. E., Weston A. W., Freifelder M., Michaels R. J. jr (Abbott Laboratories): U.S. 2 980 683 (18.04.61); Chem. Abstr. 55, 17 663 (1961).
- 9. Archer G. A., Sternbach L. H.: J. Org. Chem. 29, 231 (1964).
- Hester J. B. jr, Rudzik A. D., Kamdar B. V.: J. Med. Chem. 14, 1078 (1971).
- 11. Vejdělek Z., Metyš J., Protiva M.: This Journal 48, 123 (1983).
- Massarani E., Nardi D., Degen L. (Société d'Exploitation Chimiques et Pharmaceutiques Seceph S. A.): Swiss 473 826 (Appl. 11.09.67); S. African 69/01 435; Chem. Abstr. 72, 21 712 (1970).
- 13. Massarani E., Nardi D., Tajana A., Degen L.: J. Med. Chem. 14, 633 (1971).
- Braker W., Christiansen W. G.: J. Amer. Pharm. Assoc. 22, 950 (1933); Chem. Zentralbl. 1934, I, 1 819.
- 15. Barrett P. A., Caldwell A. G., Walls L. P.: J. Chem. Soc. 1961, 2 404.
- Barrett P. A., Caldwell A. G., Walls L. P. (Wellcome Foundation Ltd.): Brit. 921 315 (Appl. 31.03.58); Chem. Abstr. 60, 2 967 (1964).
- 17. Palomaa M. H., Kenetti A.: Ber. Deut. Chem. Ges. 64, 797 (1931).
- 18. Harrison G. C., Diehl H.: Org. Syn., Coll. Vol. 3, 370 (1955).

- 19. Kirner W. R., Windus W.: Org. Syn., Coll. Vol. 2, 136 (1943).
- 20. Marvel C. S., Tanenbaum A. L.: Org. Syn., Coll. Vol. 1, 435 (1932).
- 21. Scherlin S. M., Jakubowitsch A. I.: J. Prakt. Chem. (N. F.) 138, 23 (1933).
- Vejdělek Z., Svátek E., Holubek J., Metyš J., Bartošová M., Protiva M.: This Journal 46, 148 (1981).

Translated by the author (M. P.).

Note added in proof: The base Ib is also crystalline; m. p. 94-96°C with decomposition (ethanol), For $C_{25}H_{28}Cl_2N_6O$ (499·5) calculated: 60·12% C, 5·65% H, 14·20% Cl, 16·83% N; found: 59·64% C, 5·96% H, 14·19% Cl, 16·43% N.