Palladium-catalyzed cross-coupling of 6-bromo-2-methylbenzothiazole with arylzinc chlorides

N. A. Bumagin, * A. F. Sokolova, and I. P. Beletskaya

M. V. Lomonosov Moscow State University, Department of Chemistry, Leninskie gory, 119899 Moscow, Russian Federation. Fax: +7 (095) 939 1854

2-Methylbenzothiazoles containing various substituents at position 6 are used as starting compounds in the syntheses of thiacarbocyanines, a broad class of cyanine dyes that are used as sensitizers for photographic emulsions in the long-wave spectral region.^{1,2}

We elaborated an efficient method for introducing an aryl group at position 6 of benzothiazoles by the reaction of 6-bromo-2-methylbenzothiazole (1) with arylzinc chloride (obtained by treatment of the respective organomagnesium compounds with ZnCl₂ in THF) catalyzed by the PdCl₂(dppf) complex [where dppf is 1,1'-bis(diphenylphosphino)ferrocene]. The reaction proceeds quickly and selectively at room temperature in THF to give 6-aryl-2-methylbenzothiazoles (2) in high yields. The reaction times and yields of cross-coupling products 2 are given in parentheses below the Scheme.

$$ArMgBr + ZnCl_2 \xrightarrow{THF} ArZnCl + MgClBr$$

Br
$$CH_3$$
 + ArZnCl $\frac{1 \text{ mol. } \% \text{ PdCl}_2(\text{dopf})}{\text{THF, } 20^{\circ}\text{C}}$

Ar CH_3 CH_3 CH_3

 $A_r = Ph (0.5 h, 73 \%), 4-CH_3OC_6H_4 (1.5 h, 95 \%), 3,4-(CH_3O)_2C_6H_3 (1.5 h, 97 \%)$

Compound 1 (2 mmol) and THF (2 mL) were placed under argon into a flask equipped with a magnetic stirrer. Then, a ~0.3 M solution (10.6 mL, 3.2 mmol) of an arylzinc chloride [obtained from 9 mL of 1 M solution (9 mmol) of ArMgBr and 17 mL of a solution of $ZnCl_2$ (1.21 g, 9 mmol) in THF] and $PdCl_2$ (dppf) (0.015 g, 0.02 mmol) were added. The reaction mixture was stirred at ~20°C. After the reaction was completed, the mixture was treated with saturated aqueous NH_4Cl and extracted with ether. The ethereal extract was dried with Na_2SO_4 . The solvent was distilled off, and the residue was chromatographed on SiO_2 (40/100 μ , hexane:ether = 4:1). The following compounds were obtained.

6-(4'-Methoxyphenyl)-2-methyl-benzothiazole, m.p. 110.4—110.6°C (from pentane). Found (%): C, 69.25; H, 5.21; N, 5.06. $C_{15}H_{13}NOS$. Calculated (%): C, 70.56; H, 5.13; N, 5.48. ¹H NMR (CD₂Cl₂), δ : 2.81 (s, 3 H, Me); 3.84 (s, 3 H, MeO); 6.99 (d, $J_{3',2'} = 8.8$ Hz, 2 H, H-3', H-5'); 7.57 (d, $J_{2',3'} = 8.8$ Hz, 2 H, H-2', H-6'); 7.63 (dd, $J_{5,4} = 8.5$ Hz, $J_{5,7} = 2.1$ Hz, 1 H, H-5); 7.94 (d, $J_{4,5} = 8.5$ Hz, 1 H, H-4); 7.97 (d, $J_{7,5} = 2.1$ Hz, 1 H, H-7).

2-Methyl-6-phenylbenzothiazole, m.p. 89.5–90.5°C (from ether). Found (%): C, 74.41; H, 4.93; N, 5.99. $C_{14}H_{11}NS$. Calculated (%): C, 74.61; H, 4.93; N, 6.21. ^{1}H NMR ($CD_{2}Cl_{2}$), δ : 2.83 (s, 2 H, Me); 7.38 (t, $J_{4',3'}=7.6$ Hz, 1 H, H-4'); 7.48 (dd, H-5', $J_{3',2'}=J_{3',4'}=7.6$ Hz, 2 H, H-3'); 7.66 (d, $J_{2',3'}=7.6$ Hz, 2 H, H-2', H-6'); 7.69 (dd, $J_{5,4}=8.3$ Hz; $J_{5,7}=1.8$ Hz, 1 H, H-5); 7.98 (d, $J_{4,5}=8.3$ Hz, 1 H, H-4); 8.05 (d, $J_{7,5}=1.8$ Hz, 1 H, H-7).

6-(3',4'-Dimethoxyphenyl)-2-methyl-benzothiazole, m.p. $104.0-104.5^{\circ}$ C (from ether). Found (%): C, 67.06; H, 5.28; N, 4.55. $C_{16}H_{15}NO_2S$. Calculated (%): C, 67.34; H, 5.31; N, 4.91. ¹H NMR (CD₂Cl₂), δ : 2.81 (s, 3 H, Me); 3.87 (s, 3 H, 3'-MeO); 3.91 (s, 3 H, 4'-MeO); 6.95 (d, $J_{5',6'} = 8.1$ Hz, 1 H, H-5'); 7.17 (d, 1 H, H-2'); 7.18 (dd, $J_{6',5'} = 8.1$ Hz, $J_{6',2'} = 2.2$ Hz,

1 H, H-6'); 7.64 (dd, $J_{5,4}$ = 8.5 Hz, $J_{5,7}$ = 1.8 Hz, 1 H, H-5); 7.94 (d, $J_{4,5}$ = 8.5 Hz, 1 H, H-4); 8.00 (d, $J_{7,5}$ = 1.8 Hz, 1 H, H-7).

References

1. A. I. Kiprianov, Tsvet i stroenie tsianinovykh krasitelei (Color

and Structure of Cyanine Dyes), Naukova Dumka, Kiev, 1979, 23-106 (in Russian).

B. I. Shapiro, L. I. Mikheeva, A. G. Vakar, Yu. L. Slominskii, and A. I. Tolmachev, V Vsesoyuz. simp. "Fizika i khimiya polimetinovykh krasitelei" (Vth All-Union Symp. "Physics and Chemistry of Polymethine Dyes), Chernogolovka, December 4—8, 1989, Moscow, 1989, 231—233 (in Russian).

Received June 13, 1993 in revised form October 14, 1993

Palladium-catalyzed synthesis of 3-substituted pyrroles from 3-pyrrolylmagnesium bromide

N. A. Bumagin, * A. F. Sokolova, and I. P. Beletskaya

M. V. Lomonosov Moscow State University, Department of Chemistry, Leninskie gory, 119899 Moscow, Russian Federation. Fax: +7 (095) 939 1854

It is known that pyrroles with free α -(2,5) positions can be used for synthesizing porphyrins. However, the preparation of 3-substituted pyrroles encounters difficulties due to the tendency of the pyrrole ring to undergo electrophilic substitution at position 2. Therefore, various indirect methods for synthesizing these compounds are being developed. 1,2

We were the first to obtain 3-1-(triisopropylsilyl)-pyrrolylmagnesium bromide (1) from the respective 3-bromo derivative and elaborate an efficient procedure for the synthesis of 3-substituted pyrroles (2) based on cross-coupling of the above Grignard reagent with organic halides. The reaction is catalyzed by PdCl₂(dppf) [dppf = 1,1'-bis(diphenylphosphino)ferrocene].

If the aryl bromide contains a hydroxyl and carboxyl group sensitive to the action of organomagnesium compounds, then the organic halide is pretreated with a stoichiometric amount of any Grignard reagent, e.g., p-methoxyphenylmagnesium bromide, in order to protect these groups. In all cases, the cross-coupling was completed in 1–1.5 h, and the 3-substituted pyrroles were obtained in 65–90% yields.

$$(i-Pr)_3S_i^f$$
+ Mg THF
$$(i-Pr)_3S_i^f$$

$$(i-Pr)_3S_i^f$$

$$\mathsf{RBr} + \bigvee_{\mathsf{N}} \mathsf{MgBr} \\ (\mathit{i-Pr})_{3}\mathsf{Si} \\ \underbrace{\mathsf{THF}, \ \Delta}_{\mathsf{N}} \underbrace{\mathsf{NgBr}}_{\mathsf{N}} \\ (\mathit{i-Pr})_{3}\mathsf{Si} \\ \mathsf{NgBr}$$

2a:
$$R = Ph$$

2b: $R = 4-HOOCC_6H_4$
2c: $R = 4-HOC_6H_4$
2d: $R = 4-FC_6H_4$