Atmospheric Chemistry of CF₂BrH: Kinetics and Mechanism of Reaction with F and Cl Atoms and Fate of CF₂BrO Radicals

Merete Bilde, Jens Sehested,* and Trine E. Møgelberg

Section for Chemical Reactivity, Environmental Science and Technology Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Timothy J. Wallington*

Ford Motor Company, Ford Research Laboratory, SRL-3083, P.O. Box 2053, Dearborn, Michigan 48121-2053

Ole J. Nielsen*

Ford Motor Company, Ford Forschungszentrum Aachen, Dennewartstrasse 25, D-52068 Aachen, Germany Received: October 11, 1995; In Final Form: February 1, 1996[®]

A pulse radiolysis technique was used to investigate the kinetics and products of the reaction of CF₂BrH with fluorine atoms at 296 K. This reaction forms an adduct which is in dynamic equilibrium with CF₂BrH and fluorine atoms. The UV absorption spectrum of the adduct was measured relative to the UV spectrum of the CH₃O₂ radical over the range 230–380 nm. At 280 nm, an absorption cross section of $(1.3 \pm 0.3) \times 10^{-17}$ cm² molecule⁻¹ was determined. From the absorption at 280 nm the equilibrium constant $K_5 = [adduct]/([F][CF_2BrH])$ was measured to be $(1.59 \pm 0.13) \times 10^{-17}$ cm³ molecule⁻¹. In 1 atm of SF₆, the forward rate constant $k_5 = (1.4 \pm 0.5) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and the backward rate constant $k_{-5} = (8.8 \pm 3.0) \times 10^{5}$ s⁻¹ were determined by monitoring the rate of formation and loss of the adduct. As part of the present work a relative rate technique was used to measure $k(Cl+CF_2BrH) = (5.8 \pm 1.0) \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 296 K and 700 Torr of N₂. The fate of the oxy radical, CF₂BrO, in the atmosphere is bromine atom elimination and formation of COF₂.

1. Introduction

Halons are used as fire-extinguishing agents. The active species in halons is bromine. When heated to high temperatures, halons decompose liberating bromine atoms, which trap the free radicals that propagate combustion. However, bromine atoms are also very efficient in destroying ozone in the stratosphere.¹ Bromine atoms are produced by photolysis of halons in the stratosphere. CF₂BrH has been proposed as a substitute for conventional fully halogenated halons. Following release into the atmosphere, hydrogen containing halogenated species react with OH radicals to produce halogenated alkyl radicals which will, in turn, react with O₂ to give peroxy radicals.² For example, in the case of CF₂BrH:

$$CF_2BrH + OH \rightarrow CF_2Br + H_2O$$
 (1)

$$CF_2Br + O_2 + M \rightarrow CF_2BrO_2 + M$$
 (2)

In the atmosphere the peroxy radical, CF_2BrO_2 , will be converted into the corresponding oxy radical, CF_2BrO . As part of a joint program between our two laboratories to survey the atmospheric fate of halogenated compounds,³⁻⁹ we have conducted an experimental study of the atmospheric chemistry of CF_2BrH . A pulse radiolysis technique was used to determine absolute rate constants for individual reactions and to investigate the mechanism of the reaction of F atoms with CF_2BrH . The atmospheric fate of CF_2BrO radicals was determined using a FTIR spectrometer coupled to an atmospheric reactor. Results are reported herein.

2. Experimental Section

The two different experimental systems used in the present work have been described in detail previously^{10,11} and will only be discussed briefly here.

2.1. Pulse Radiolysis System. Reactions were initiated by the irradiation of SF_6/CF_2BrH and $SF_6/CF_2BrH/CH_4$ mixtures in a 1 L stainless steel reaction cell with a 30 ns pulse of 2 MeV electrons from a Febetron 705B field emission accelerator. SF_6 was always in great excess and was used to generate fluorine atoms:

$$SF_6 \xrightarrow{2 \text{ MeV } e^-} F + \text{ products}$$
 (3)

$$F + CF_2BrH \rightarrow products$$
 (4)

The radiolysis dose was varied by insertion of stainless steel attenuators between the accelerator and the chemical reactor. In this article we will refer to the radiolysis dose used in specific experiments as a fraction of the maximum dose that is achievable. The fluorine atom yield (required for quantification of UV absorption spectra) was measured by monitoring the transient absorption at 260 nm due to CH_3O_2 radicals produced by radiolysis of $SF_6/CH_4/O_2$ mixtures:

Using σ (CH₃O₂) = 3.18 × 10⁻¹⁸ cm² molecule⁻¹,¹² this absorption corresponds to a F atom yield of $(3.2 \pm 0.3) \times 10^{15}$ molecules cm⁻³ at full radiolysis dose and 1000 mbar of SF₆.¹³ The quoted uncertainty includes 10% uncertainty in σ (CH₃O₂) and 2 standard deviations in the absorption measurements. The uncertainties reported in this paper are 2 standard deviations unless otherwise stated. Standard error propagation methods are used to calculate combined uncertainties.

0 © 1996 American Chemical Society

^{*} To whom correspondence should be addressed.

[®] Abstract published in Advance ACS Abstracts, April 1, 1996.

Figure 1. Transient absorbance at 280 nm following the pulsed radiolysis (11% of maximum dose) of 2.5 mbar of CF_2BrH and 997.5 mbar of SF_6 . The UV path length was 120 cm. The smooth line is a first-order fit to the experimental data.

Transient absorptions were followed by multipassing the output of a pulsed 150 W xenon arc lamp through the reaction cell using internal White cell optics. The physical path length of the cell is 10 cm. Total optical path lengths of 80 and 120 cm were used. After leaving the cell the light was guided through a 1 m McPherson grating UV-vis monochromator and detected with a Hamamatsu photomultiplier. All absorption transients were produced in single-pulse experiments with no signal averaging. The spectral resolution was 0.8 nm. Reagent concentrations used were as follows: SF₆, 895-995 mbar; CF₂BrH, 0-50 mbar; CH₄, 2-40 mbar. All experiments were performed at 296 K. SF₆ (99.9%) was supplied by Gerling and Holz, CF₂BrH (>97%) was supplied by Fluorochem Ltd., and CH₄ (>99%) was supplied by Gerling and Holz. All reagents were used as received. The partial pressures of the different gases were measured with a Baratron absolute membrane manometer with a detection limit of 10^{-5} bar.

A Princeton Applied Research OMA-II diode array was used to measure the UV absorption spectrum of the CF₂BrH–F adduct. The diode array was installed at the exit slit of the monochromator in place of the photomultiplier which was used for measuring transient absorptions. The setup consisted of the diode array, an image amplifier (type 1420-1024HQ), a controller (type 1421) and a conventional personal computer used for data acquisition, handling, and storage. Spectral calibration was achieved using a Hg pen ray lamp.

2.2. FTIR Smog Chamber System. The FTIR system was interfaced to a 140 L Pyrex reactor. Radicals were generated by the UV irradiation of mixtures of CF₂BrH and Cl₂, or F₂, in 700 Torr of N₂, or air diluent, at 296 K using 22 blacklamps (760 Torr = 1013 mbar). The loss of reactants and formation of products were monitored by FTIR spectroscopy, using an analyzing path length of 26 m and a resolution of 0.25 cm⁻¹. Infrared spectra were derived from 32 coadded spectra. Reference spectra were acquired by expanding known volumes of reference materials into the reactor.

3. Pulse Radiolysis Results and Discussion

3.1. Adduct Formation from the Reaction of F with CF_2BrH . Figure 1 shows the transient absorption at 280 nm following the radiolysis (11% of maximum dose) of 2.5 mbar of CF_2BrH and 997.5 mbar SF_6 using an optical path length of 120 cm. The maximum transient absorbances were measured as a function of the radiolysis dose using mixtures of 980 mbar of SF_6 and either 2.5 or 20 mbar of CF_2BrH .

Figure 2. Maximum transient absorbance at 280 nm following the pulsed radiolysis of mixtures of 20 mbar (circles) and 2.5 mbar (squares) of CF_2BrH , respectively, and 980 and 998 mbar of SF_6 , respectively, as a function of the radiolysis dose. The solid lines are linear regressions to the low dose data (filled symbols).

Figure 2 shows plots of the maximum absorbances for the two different mixtures as functions of the radiolysis dose. The maximum absorbances were linear functions of the radiolysis dose up to 50% of the full dose. The deviations from linearity at higher dose are ascribed to secondary radical-radical reactions such as self-reaction of the absorbing species or reactions between F atoms and the absorbing species. The solid lines are linear least-squares fits to the low-dose data. The slopes of the linear regressions in Figure 2 are 2.0 ± 0.1 for mixtures containing 20 mbar of CF₂BrH and 0.96 ± 0.04 for mixtures containing 2.5 mbar of CF₂BrH, respectively.

In all experiments the initial concentration of CF_2BrH is in great excess compared to that of fluorine atoms. At low doses one would expect complete conversion of F atoms to products according to reaction 4. As a consequence the absorbance

$$F + CF_2BrH \rightarrow products$$
 (4)

should be independent of the initial concentration of CF_2BrH . It is clear from Figure 2 that this is not the case and the question which arises is, "Why is the observed absorbance using an initial concentration of 2.5 mbar CF_2BrH approximately half of that observed using 20 mbar of CF_2BrH ?" The data in Figure 2 show that F atoms do not react with CF_2BrH via a simple H-atom abstraction mechanism:

$$F + CF_2BrH \rightarrow CF_2Br + HF$$
 (4a)

because, in this case the two dose plots would have the same slopes. The data in Figure 2 can be explained if the species which absorbs at 280 nm is an adduct in which a F atom is weakly bound to CF_2BrH and if the adduct is in dynamical equilibrium with F atoms and CF_2BrH :

$$F + CF_2BrH \rightleftharpoons X$$
 (5,-5)

The lower absorption observed for $[CF_2BrH] = 2.5$ mbar compared to the absorption with $[CF_2BrH] = 20$ mbar can be explained by a shift in the equilibrium toward the adduct at higher concentrations of CF_2BrH . In the following we shall show that all the experimental evidence can be interpreted in terms of an equilibrium between F, CF_2BrH , and the adduct X. In sections 3.2-3.6 we proceed on the assumption that reaction 4a makes a negligible contribution to the overall reaction. The validity of this assumption is discussed in section 4.2.

Figure 3. Plot of maximum absorbance as a function of $[CF_2BrH]$. The UV path length was 120 cm. The relative radiolysis dose was 22% of maximum dose.

3.2. Determination of the Equilibrium Constant. Assuming that all species behave as ideal gases the equilibrium constant of (5) is defined as

$$K_5 = k_5 / k_{-5} = [X] / ([F] [CF_2 BrH])$$

where X is the CF₂BrH-F adduct.

To determine K_5 , the maximum transient absorption following pulsed radiolysis of mixtures of SF₆ and CF₂BrH at 280 nm was obtained from a double-exponential fit to the transient. The absorbance was measured at low dose (22% of maximum) where no secondary chemistry interferes with the measurements. A plot of the absorbance as a function of the initial concentration of CF₂BrH is shown in Figure 3. The equilibrium constant K_5 was derived from a two-parameter fit of the following expression to the experimental data:

$$A = A_r K_5 [CF_2BrH]/(1 + K_5 [CF_2BrH])$$

where *A* is the observed absorbance as a function of [CF₂BrH] and A_x is the absorbance when all F atoms are converted into the adduct. The value obtained for the equilibrium constant was $K_5 = (1.59 \pm 0.13) \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}$. The value obtained for A_x was 0.48 ± 0.01

To confirm this result and to determine the rate constants for the forward and backward reactions in (5), k_5 and k_{-5} , respectively, two additional sets of experiments were carried out. They are described in the following subsections.

3.3. Determination of k_5 and k_{-5} . Another set of information can be extracted from the experiments described in section 3.2. In all experiments the initial concentration of CF₂BrH is at least 35 times the concentration of F atoms and hence the loss of F atoms and the formation of products will follow pseudo-first-order kinetics. The observed transient absorbances were fit using the expression $A(t) = (A_{inf} - A_0)[1 - \exp(-k^{1st}t)] + A_0$, where A(t) is the time-dependent absorbance, A_{inf} is the absorbance at infinite time, k^{1st} is the pseudo-first-order formation rate of X, and A_0 is the extrapolated absorbance at t = 0.

Figure 4 shows a plot of the pseudo-first-order rate constants for the formation of X, $k^{1\text{st}}$, as a function of the concentration of CF₂BrH. The pseudo-first-order rate of formation of X increased linearly with CF₂BrH concentration. Linear leastsquares analysis of the data in Figure 4 gives a slope of (1.56 \pm 0.31) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹.

We assume that the formation kinetics for X are not influenced by any loss mechanism apart from decomposition

Figure 4. Plot of k^{1st} vs [CF₂BrH]. See text for details.

to the parent species. This is reasonable because the decay of the adduct is much slower than its formation. At any time the concentration of F atoms will be given by $[F] = [F]_0 - [X]$, where $[F]_0 = (7.0 \pm 0.7) \times 10^{14}$ molecules cm⁻³. The system is described as a first-order reversible reaction, and the differential equations which describe this system can be solved analytically. See, for example, ref 14, for details on the algebra. The rate law for the formation of X is

$$d[X]/dt = k'_{5}[F]_{0} - (k'_{5} + k_{-5})[X], \quad k'_{5} = k_{5}[CF_{2}BrH]$$

The solution of this nonhomogeneous first-order linear differential equation is

$$[X](t) = \frac{k'_{5}[F]_{0}}{k'_{5} + k_{-5}} (1 - \exp(-(k'_{5} + k_{-5})t))$$

The pseudo first order formation rate will be equal to k_5 [CF₂BrH] + k_{-5} . Hence, in Figure 4 the *y*-axis intercept gives k_{-5} and the slope gives k_5 . We obtain $k_5 = (1.56 \pm 0.31) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and $k_{-5} = (8.3 \pm 2.5) \times 10^5$ s⁻¹. The equilibrium constant is $K_5 = k_5/k_{-5} = (1.8 \pm 0.8) \times 10^{-17}$ cm³ molecule⁻¹. This is in good agreement with the value of (1.59 ± 0.13) $\times 10^{-17}$ cm³ molecule⁻¹ obtained in section 3.2.

3.4. Kinetics of the CF₂BrH-F Adduct in the Presence of CH₄. To further confirm that the adduct X is formed in the reaction of F atoms with CF₂BrH (eq 5), a set of experiments was performed with added CH₄ to provide a loss mechanism for F atoms (eq 6).

$$F + CH_4 \rightarrow CH_3 + HF \tag{6}$$

In these experiments the concentration of CF_2BrH was fixed at 20 mbar, the concentration of CH_4 was varied over the range 2-40 mbar, and SF_6 was added so the total pressure remained fixed at 1000 mbar. The transient absorption at 280 nm was observed at different concentrations of CH_4 . The radiolysis dose was 22% of maximum, and the optical path length was 120 cm. Figure 5 shows the observed variation of the maximum absorbance as a function of the concentration ratio [CH_4]/ [CF_2BrH]. As shown in Figure 5, the addition of CH_4 results in a sharp decrease in the observed absorption at 280 nm.

The CH₃ radical does not absorb at 280 nm and the reaction of F atoms with CH₄ is fast, $k_6 = 6.8 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.¹⁵ CH₄ is an efficient scavenger of F atoms. In contrast, we do not anticipate that CH₄ is an efficient scavenger of other radicals potentially formed in the system. The species respon-

Figure 5. Plot of maximum absorption at 280 nm vs the concentration ratio $[CH_4]/[CF_2BrH]$. See text for details.

sible for the absorption at 280 nm must therefore be formed from reaction of F atoms with CF₂BrH, i.e., from reaction 5.

The competition between reactions 5 and 6 was used to determine the rate constant for reaction 5. The solid line in Figure 5 represents a two-parameter fit of the following expression to the experimental data:

$$A_{\text{max}} = A_{\text{eq}} \left(1 + \frac{k_6}{k_5} \frac{[\text{CH}_4]}{[\text{CF}_2\text{BrH}]} \right)^{-1}$$

where A_{max} is the observed maximum absorbance as a function of the concentration ratio [CH₄]/[CF₂BrH] and A_{eq} is the absorbance with no CH₄ present. A_{eq} and k_6/k_5 were simultaneously varied, and the best fit was achieved with $A_{\text{eq}} = (0.405 \pm 0.02)$ and $k_6/k_5 = (5.42 \pm 0.81)$. Using $k_6 = (6.8 \pm 1.4) \times 10^{-11}$ (ref 15) gives $k_5 = (1.25 \pm 0.25) \times 10^{-11}$ which is consistent with the value of $k_5 = (1.56 \pm 0.31) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ determined in section 3.3. This consistency strongly suggests that the species absorbing at 280 nm is formed by the reaction of F atoms with CF₂BrH. If reaction of another species with CF₂BrH gave rise to the observed absorbance at 280 nm, it is highly unlikely that consistent values of k_5 would be obtained from the two different techniques.

A value of k_{-5} can be obtained by observing the decay of X in the presence of CH₄. The following reactions are considered:

$$F + CF_2BrH \rightleftharpoons X$$
 (5,-5)

$$F + CH_4 \rightarrow CH_3 + HF \tag{6}$$

Every time X decomposes to F atoms and CF_2BrH the F atoms can reform X via reaction 5 or be consumed by reaction 6. The fraction of F atoms reacting with methane is given by

$$f_{\rm CH_4} = \left(1 + \frac{k_5}{k_6} \frac{[\rm CF_2 Br H]}{[\rm CH_4]}\right)^{-1}$$

If all the F atoms produced from the decomposition of X are removed by reaction with methane, the decay rate of X will be k_{-5} . However, if only a fraction of F atoms is removed through this channel, the rate of decay for X is given as $k_{decay} = f_{CH_4}k_{-5}$. This means that if we plot k_{decay} as a function of f_{CH_4} , the slope is k_{-5} . Decay rates were obtained from experiments where the concentration of CF₂BrH was held fixed at 20 mbar, the concentration of CH₄ was varied over the range 2–40 mbar,

Figure 6. Plot of k_{decay} vs f_{CH_4} . See text for details.

and SF₆ was added in an amount such that the total pressure remained fixed at 1000 mbar. The observed decay of the transient absorption was fitted using the first-order expression given in section 3.3 with t = 0 being the time for maximum absorbance and $k^{1\text{st}}$ the decay rate of X. Figure 6 shows a plot of k_{decay} versus f_{CH_4} . The solid line is a linear regression of the experimental data which gives $k_{-5} = (9.4 \pm 1.5) \times 10^5 \text{ s}^{-1}$ and an intercept of $(1.3 \pm 0.9) \times 10^5 \text{ s}^{-1}$.

The positive intercept indicates that even in the absence of methane there is a significant loss of the adduct. The intercept can be explained by radical-radical reactions such as the adduct self reaction or the existence of a loss mechanism (eq 7) for the adduct which does not involve the formation of F atoms:

$$F + CF_2BrH \rightleftharpoons X$$
 (5,-5)

$$X \rightarrow \text{products}$$
 (7)

The different values of K_5 , k_5 , and k_{-5} and a short summary of how they were determined is given in Table 1. The three values calculated for K_5 show good agreement.

We decide to cite a final value of $K_5 = (1.59 \pm 0.13) \times 10^{-17}$ cm³ molecule⁻¹ obtained using the method which gave the greatest precision. For k_5 and k_{-5} we choose to quote values which are averages of the results in Table 1 with error limits that encompass the extremes of the ranges; hence $k_5 = (1.4 \pm 0.5) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and $k_{-5} = (8.8 \pm 3.0) \times 10^5$ s⁻¹.

3.5. Decay of the Adduct. The decay of X was studied by radiolysis of mixtures of 20 mbar of CF2BrH and 980 mbar of SF_6 . The decay of the transient absorptions were observed at 280 nm with the radiolysis dose varied over an order of magnitude. Figure 7A shows the transient absorption at 280 nm following the radiolysis at full radiolysis dose. The optical path length was 120 cm. The decay was fitted using a first order expression. Figure 8 displays a plot of k_{decay} as a function of the maximum transient absorbance. Using the steady-state approximation for X, the concentration ratio [X]/[F] is constant. In the limit of zero dose and hence zero F atoms, no secondary chemistry takes place and the only way that the concentration of X can decrease is by decomposition of X, i.e., reaction 7. The intercept in Figure 8 can therefore be interpreted as the first-order decay rate constant for reaction 7. This gives $k_7 =$ $(7.41 \pm 0.72) \times 10^4 \text{ s}^{-1}$.

Using the diode array the radiolysis of mixtures of 20 mbar of CF_2BrH and 980 mbar of SF_6 was followed. The UV path length was 80 cm, and the resolution was 0.8 nm. Figure 9

7054 J. Phys. Chem., Vol. 100, No. 17, 1996

TABLE 1

Figure 7. Transient absorbance following the pulsed radiolysis (A) (53% of maximum dose) of a mixture of 20 mbar of CF_2BrH and 980 mbar of SF_6 . The UV path length was 120 cm. (B) Transient absorbance following the pulsed radiolysis (42% of maximum dose) at 249 nm of a mixture of 20 mbar of CF_2BrH and 980 mbar of SF_6 . The UV path length was 80 cm and the resolution was 0.16 nm.

Figure 8. k_{decay} versus maximum transient absorbance. See text for details.

shows the spectrum obtained 100 μ s after the electron pulse. The characteristic spectrum of CF₂ was observed. At this time there is no adduct left (see Figure 7A), and it seems reasonable

 $k_{-5} \, [s^{-1}]$

 $(8.3 \pm 2.5) \times 10^5$

 $(9.4 \pm 1.5) \times 10^{5}$

 $k_5 \text{ [cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{]}$

 $(1.56\pm 0.31)\times 10^{-11}$

 $(1.25\pm 0.25)\times 10^{-11}$

Figure 9. Absorbance following radiolysis of 20 mbar of CF₂BrH and 980 mbar of SF₆. The spectrum was recorded $100-101 \ \mu s$ after the electron pulse. The sharp absorption lines are due to CF₂ radicals.

Figure 10. Transient absorbance at 249 nm 50 μ s after the electron pulse versus the relative dose. Mixtures of 5 mbar of CF₂BrH and 980 mbar of SF₆ were radiolysed.

to assume that CF_2 is formed from decomposition of the adduct via reaction 7.

Figure 7B displays the transient absorption at 249 nm following the radiolysis of a mixture of 995 mbar SF₆ and 5 mbar of CF₂BrH. The dose was 42% of maximum, and the optical path length was 80 cm. At 249 nm CF₂ radicals absorb strongly, and it is seen in Figure 7B that the absorption does not fall to zero within the observed time interval, this is ascribed to the formation of CF₂ radicals. CF₂ radicals are relatively unreactive and are expected to be persistent in the reaction cell over a time scale of the order of 10^{-4} s. A series of experiments was performed where the radiolysis dose was varied over an order of magnitude. As shown in Figure 7A, at 50 us after the radiolysis pulse the loss of adduct is essentially complete. Figure 10 shows a plot of the absorbance 50 μ s after the electron pulse versus the relative dose. The solid line is a linear least squares fit to the low dose data. The slope is $\beta = (0.61 \pm$ 0.04). The yield of CF_2 relative to the amount of $[F]_0$ was

Figure 11. UV spectrum of the CF_2BrH --F adduct. The spectrum of the CH_3Br --F adduct is shown for comparison.

calculated from the expression $[CF_2]/[F_0] = \beta 2.303/(\sigma(CF_2)-[F]_0)$, where $[F]_0 = 3.2 \times 10^{15}$ molecule cm⁻¹ and l = 80 cm is the optical path length. Unfortunately, the literature values of $\sigma(CF_2)$ differ considerably: $\sigma_{249nm}(CF_2) = (2.9 \pm 0.4) \times 10^{-17}$,¹⁶ $\sigma_{249nm}(CF_2) = (8.0 \pm 1.4) \times 10^{-18}$,¹⁷ and $\sigma_{249nm}(CF_2)$ = $(8.4 \pm 0.4) \times 10^{-18}$ cm² molecule⁻¹.¹⁸ From these values the yield of CF₂ was calculated to be 19%, 69%, or 65%, respectively. Quantification of the CF₂ yield is further complicated by the fact that $\sigma_{249nm}(CF_2)$ is sensitive to the internal excitation of the CF₂ radical.¹⁸ The internal excitation of the CF₂ radicals observed here is unknown. Therefore, we are unable to provide a precise quantification of the substantial CF₂ yield.

3.6. UV Absorption Spectrum of the Adduct X. The absolute cross section of the adduct X was determined at 280 nm from the experiments described in section 3.1. The absorption cross section was determined from the expression $\sigma = 2.303\alpha(1 + K_5[CF_2BrH])/(lK_5[CF_2BrH][F]_0)$, where α is the slope of a linear regression fit to the data shown in Figure 2, l = 120 cm, and $[F]_0 = 3.2 \times 10^{15}$ molecules cm⁻³ is the F atom yield at full radiolysis dose. The results were $\sigma = (1.35 \pm 0.15) \times 10^{-17}$ cm² molecule⁻¹ from experiments with [CF_2BrH] = 20 mbar and $\sigma = (1.16 \pm 0.13) \times 10^{-17}$ from experiments with [CF_2BrH] = 2.5 mbar.

The UV absorbance spectrum of the adduct X following the pulsed irradiation of a mixture of 20 mbar of CF2BrH and 980 mbar of SF₆ was measured using a diode array. The conditions were as follows: spectral resolution = 3 nm, wavelength = 230–380 nm, gate = $1-2 \mu s$, 53% of full radiolysis dose. To place the observed UV absorption of the adduct on an absolute basis the absorptions were scaled to that at 280 nm and converted into absolute absorption cross sections using $\sigma(280\text{nm})$ = 1.3×10^{-17} cm² molecule⁻¹. The spectrum of the adduct is shown in Figure 11, and the absorption cross sections are given in Table 2. The overall uncertainty in the absorption cross sections is estimated to be 25% and arises from uncertainty in the F atom yield, the equilibrium constant, and the stability in the lamp pulse used to record the spectrum. In Figure 11 a spectrum of the adduct formed in the reaction of F atoms with CH₃Br¹⁹ is shown for comparison. As seen from Figure 11, the spectra of the two adducts are almost identical suggesting that they have similar structure.

4. FTIR Results and Discussion

4.1. FTIR Study of the Reaction of Cl Atoms with CF₂BrH. A series of relative rate experiments was performed

 TABLE 2: Selected UV Absorption Cross Sections for the

 CF2BrH-F Adduct

v

vavelength	$10^{20}\sigma$	wavelength	$10^{20}\sigma$
(nm)	$(cm^2 molecule^{-1})$	(nm)	(cm ² molecule ⁻¹)
230	466	310	1012
240	795	320	682
250	985	330	437
260	977	340	266
270	1051	350	163
280	1290	360	94
290	1482	370	53
300	1334	380	18
Ln([CF ₂ BrH] _{t0} /[CF ₂ BrH] _t)	.6 CI .4 CI .2 CI 0.0 0.4 0 Ln([Methane)4 8 1.2] _{t0} /[Methar	CH ₄ 1.6 2.0 ne] _t)

Figure 12. Loss of CF_2BrH versus loss of methane when CF_2BrH / methane mixtures were exposed to Cl atoms in 700 Torr of air diluent.

using the FTIR system to investigate the kinetics and mechanism of the reaction of Cl atoms with CF₂BrH. The techniques used are described in detail elsewhere.²⁰ Photolysis of molecular chlorine was used as a source of Cl atoms:

$$Cl_2 + h\nu \rightarrow 2Cl$$
 (8)

$$Cl + CF_2BrH \rightarrow CF_2Br + HCl$$
 (9)

The kinetics of reaction 9 were measured relative to reactions 10 and 11. The observed losses of CF_2BrH versus CD_4 and

$$Cl + CD_4 \rightarrow CD_3 + DCl \tag{10}$$

$$Cl + CH_4 \rightarrow CH_3 + HCl$$
 (11)

CH₄ following the UV irradiation of CF₂BrH/CD₄/Cl₂ and CF₂BrH/CH₄/Cl₂ mixtures, respectively, in 700 Torr total pressure of air diluent are shown in Figure 12. Linear leastsquares analysis gives $k_9/k_{10} = 0.89 \pm 0.05$ and $k_9/k_{11} = 0.061$ \pm 0.005. Using $k_{10} = 6.1 \times 10^{-15}$ (ref 20) and $k_{11} = 1.0 \times 10^{-15}$ 10^{-13} (ref 21) gives $k_9 = (5.4 \pm 0.3) \times 10^{-15}$ and $k_9 = (6.1 \pm 0.3) \times 10^{-15}$ $(0.5) \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively. We choose to cite a final value for k_9 which is the average of the two experimental determinations with error limits which encompass the extremes of the determinations. Hence, $k_9 = (5.8 \pm 0.8) \times$ 10^{-15} cm³ molecule⁻¹ s⁻¹. We estimate that potential systematic errors associated with uncertainties in the reference rate constants could add an additional 10% to the uncertainty range. Propagating this additional 10% uncertainty gives $k_9 = (5.8 \pm$ 1.0) × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹. While there is no literature available for k_9 for direct comparison, our result is of the order of magnitude expected for reaction of Cl atoms with a halomethane containing two F substituents.²²

Figure 13. Formation of COF_2 versus the loss of CF_2BrH observed following the Cl atom (circles) or F atom (triangles) initiated oxidation of CF_2BrH in 700 Torr of air diluent.

Figure 13 shows a plot of the observed formation of COF_2 versus the loss of CF_2BrH following UV irradiation of a mixture of 9.2 mTorr of CF_2BrH and 174 mTorr of CI_2 in 700 Torr of air. Linear least-squares analysis of the data in Figure 13 gives a molar yield of COF_2 of $100 \pm 4\%$. COF_2 was the only carbon-containing product observed. By analogy to the behavior of other peroxy radicals²² it is expected that the self-reaction of CF_2BrO_2 radicals proceeds to give the corresponding alkoxy radicals, which will then eliminate a Br atom to give COF_2 :

$$CF_2BrO_2 + CF_2BrO_2 \rightarrow CF_2BrO + CF_2BrO + O_2$$
 (12)

$$CF_2BrO + M \rightarrow CF_2O + Br$$
 (13)

The experimental observation that Cl-initiated oxidation of CF_2BrH in our system gives 100% yield of COF_2 is entirely consistent with the expected behavior. In addition to the experiments performed in air, two experiments were performed to investigate the products following the UV irradiation of $CF_2BrH/Cl_2/N_2$ mixtures. The initial CF_2BrH concentration was 12.3 mTorr, the Cl_2 concentration was either 2.7 or 10.4 Torr, and N_2 was added to give a total pressure of 700 Torr.

CF₂BrCl was the major product following UV irradiation of CF₂BrH/Cl₂ mixtures, in yields of $88 \pm 4\%$ and $94 \pm 4\%$ from experiments employing 2.7 and 10.4 Torr of Cl₂, respectively. In addition to CF₂BrCl, one or more unknown products were observed with infrared features at 793, 831, 923, 1093, 1153, and 1161 cm⁻¹. Trace amounts of COF₂ were also detected by virtue of its characteristic feature at 774 cm⁻¹. The observed products can be rationalized in terms of the following reactions:

$$CF_2BrH + Cl \rightarrow CF_2Br + HCl$$
 (9)

$$CF_2Br + Cl_2 \rightarrow CF_2BrCl + Cl$$
 (14)

$$CF_2Br \rightarrow \rightarrow products$$
 (15)

Reaction 15 represents an unknown loss mechanism for CF_2Br radicals. The increase in CF_2BrCl yield with increasing Cl_2 concentration reflects a competition between reactions 14 and 15 for the available CF_2Br radicals. The trace of COF_2 reflects the presence of a small amount of O_2 in the 700 Torr of N_2 diluent, and so reactions 2, 12, and 13 play a small role.

At this point it is germane to consider the thermochemistry of reaction 9. By comparison to structurally similar molecules, we estimate the C–Br bond and C–H bond strengths in CF₂BrH

Figure 14. Loss of CF_2BrH versus loss of CF_3CFH_2 and CF_3CH_3 when CF_2BrH/CF_3CFH_2 and CF_2BrH/CF_3CH_3 mixtures were exposed to F atoms in 700 Torr of either air (filled symbols) or N₂ (open symbols) diluent.

to be 72 and 104 kcal mol⁻¹, respectively.²³ The bond strengths in Br–Cl and H–Cl are 52 and 103 kcal mol⁻¹, respectively. Hence, H atom abstraction is the only thermodynamically allowed channel of the reaction of Cl atoms with CF₂BrH. The experimental results discussed above are consistent with the expectation that CF₂Br radicals are formed in 100% yield from reaction 9. In light of the adduct formation between F atoms and CF₂BrH, it seems likely that Cl atoms also form an adduct with CF₂BrH. From the present work we cannot discern whether formation of CF₂Br radicals in reaction 9 occurs via concerted H-atom abstraction or via the intermediacy of a CF₂BrH–Cl adduct which eliminates HCl.

4.2. FTIR Study of the Reaction of F Atoms with CF₂BrH. To investigate the kinetics and mechanism of the reaction of F atoms with CF_2BrH , a series of relative rate experiments was performed using the FTIR system. Photolysis of molecular fluorine was used as a source of F atoms:

$$F_2 + h\nu \to 2F \tag{16}$$

$$F + CF_2BrH \rightarrow products$$
 (4)

The kinetics of reaction 4 were measured relative to reactions 17 and 18. The observed losses of CF_2BrH versus CF_3CFH_2

$$F + CF_3 CFH_2 \rightarrow CF_3 CFH + HF$$
(17)

$$F + CF_3CH_3 \rightarrow CF_3CH_2 + HF$$
(18)

and CF₃CH₃ following the UV irradiation of CF₂BrH/CF₃CFH₂/ F₂ and CF₂BrH/CF₃CH₃/F₂ mixtures, respectively, in 700 Torr total pressure of N₂ or air diluent are shown in Figure 14. Linear least-squares analysis gives $k_4/k_{17} = 0.67 \pm 0.06$ and $k_4/k_{18} =$ 0.40 ± 0.04 . The reactivity of both CF₃CFH₂ and CF₃CH₃ toward F atoms has been the subject of recent investigations in our laboratories.^{15,24} Using $k_{17} = 1.3 \times 10^{-12}$ (ref 15) and $k_{18} =$ 2.3×10^{-12} (ref 24) gives $k_4 = (8.7 \pm 0.8) \times 10^{-13}$ and $k_4 =$ $(9.2 \pm 0.9) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹, respectively. We choose to cite a final value for k_4 which is the average of the two experimental determinations with error limits which encompass the extremes of the determinations. Hence, $k_4 = (9.0 \pm 1.1) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹. We estimate that potential systematic errors associated with uncertainties in the reference rate constants could add an additional 20% to the uncertainty

TABLE 3: Observed Product Yields (percent) following Radiation of $F_2/CF_2BrH/N_2$ Mixtures

[CF ₂ BrH][F ₂]	11.5 mTorr	11.5 mTorr	11.5mTorr
	0.444 Torr	1.92 Torr	3.8 Torr
$[COF_2]$	53 ± 4	14 ± 4	15 ± 3
	9 + 1	64 + 6	70 ± 6
$[CF_3Br]$	8 ± 2	16 ± 3	16 ± 6
[CF ₃ O ₃ CF ₃] total C	$5 \pm 1 \\ 80 \pm 9$	$^{<2}$ 94 ± 13	$^{<2}$ 101 ± 11

range. Propagating this additional 20% uncertainty gives $k_4 = (9.0 \pm 2.1) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

While there are no literature data to compare with this result, we can compare the value of $k_4 = (9.0 \pm 2.1) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ obtained using the FTIR system with the value expected on the basis of results from the pulse radiolysis experiments. As discussed in sections 3.4 and 3.5, the pulse radiolysis results show that the reaction proceeds via the formation of an adduct which is in dynamical equilibrium with F atoms and CF₂BrH. In addition to decomposition into reactants, the adduct is also lost via a process which follows pseudo-first-order kinetics to give products other than F atoms and CF₂BrH:

$$F + CF_2BrH \rightleftharpoons X$$
 (5,-5)

 $X \rightarrow \text{products}$ (7)

The reactivity of F atoms toward CF₂BrH determined by the FTIR technique was derived by comparing the loss of CF₂BrH to that of a reference compound whose reactivity toward F atoms is known. Hence, the FTIR technique is "blind" to any reaction channel which leads to reformation of CF2BrH within the experimental time scale (minutes). The "effective" rate constant measured by the FTIR method is then K_5k_7 . Using the values of $K_5 = (1.59 \pm 0.13) \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}$ and $k_7 = (7.4)^{-17} \text{ cm}^3 \text{ molecule}^{-1}$ \pm 0.7) \times 10⁴ s⁻¹ from the pulse radiolysis study, it would be predicted that the "effective" rate constant measured by the FTIR method would be $(1.2 \pm 0.2) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The value measured by the FTIR, (9.0 \pm 2.1) \times 10⁻¹³ cm³ molecule $^{-1}$ s $^{-1}$, is in excellent agreement with the value predicted by the pulse radiolysis experiments. This agreement supports the assumption made in section 3.1 that direct hydrogen abstraction makes a negligible contribution to the reaction of F atoms with CF₂BrH. The kinetic data obtained using the pulse radiolysis and FTIR techniques provide a consistent picture of the reaction of F atoms with CF2BrH proceeding essentially via the formation of an adduct. Under the present experimental conditions, 1 atm at 296 K, the predominant fate of the CF₂BrH--F adduct is decomposition to reactants. A small fraction (8%) of the adduct decomposes into products.

To provide further insight into the mechanism of reaction 5, experiments were performed using the FTIR smog chamber in which CF₂BrH/F₂ mixtures in 700 Torr of either air or N₂ diluent were subject to UV irradiation. COF₂ was the only carboncontaining product observed following UV irradiation of CF_2BrH/F_2 mixtures in air diluent. The formation of COF_2 is plotted versus the loss of CF₂BrH in Figure 13. The results obtained using F atom initiated oxidation of CF₂BrH in air are indistinguishable from those obtained using Cl atom initiation, with COF₂ formed in essentially 100% yield. Three experiments were performed in which F₂/CF₂BrH mixtures at a total pressure of 700 Torr made up with N₂ diluent were irradiated and the loss of CF₂BrH and the formation of products were monitored by FTIR spectroscopy. Experimental conditions are given in Table 3. Figure 15 shows the product yields with linear leastsquares analysis.

Figure 15. Product yields of $CF_4(\bigcirc)$, $CF_3Br(\blacktriangle)$, $COF_2(\bigcirc)$, and $CF_{3}O_{3-}CF_{3}(\square)$ following irradiation of $CF_2BrH/F_2/N_2$ mixtures. The experimental details are given in the text and in Table 3.

Four carbon-containing products were observed following UV irradiation of CF₂BrH/F₂/N₂ mixtures; CF₄, CF₃Br, COF₂, and CF₃O₃CF₃. In all product studies care must be taken to ensure that the reactant compound is lost only via the reaction of interest and that the products are not lost via secondary reactions. To assess possible heterogeneous and photolytic loss in the chamber, CF₂BrH/air and CF₃Br/air mixtures were prepared, allowed to stand for 20 min, then irradiated for 20 min; no loss (<1%) of CF₂BrH or CF₃Br was discernible. It has been established previously that COF₂ and CF₃O₃CF₃ are not subject to loss via heterogeneous reactions, photolysis, or reaction with F atoms.²⁵ Finally, CF₂BrH/CF₃Br/F₂/air mixtures were subject to UV irradiation to check for reaction of F atoms with CF3Br. In such experiments loss of CF₂BrH was observed but there was no loss (<1%) of CF₃Br, showing that the CF₃Br is not consumed in this system via reaction with F atoms (F atoms may react with CF₃Br, but if so, the adduct must decompose to reform CF₃Br resulting in no overall loss of this compound). As seen from Table 3, the yields of CF₄ and CF₃Br increased, while those of COF₂ and CF₃O₃CF₃ decreased, with increasing $[F_2]_0$. CF₃Br and COF₂ formation can be rationalized by the formation of CF2Br radicals via overall hydrogen atom abstraction from CF₂BrH followed by reaction either with F₂ or with O₂ impurity in the chamber to give CF₃Br or CF₂BrO₂ radicals. The CF₂BrO₂ radicals are then converted into COF₂ via reactions 12 and 13:

$$CF_2BrH + F \rightarrow CF_2Br + HF$$
 (4a)

$$CF_2Br + F_2 \rightarrow CF_3Br + F$$
 (19)

$$CF_2Br + O_2 \rightarrow CF_2BrO_2$$
 (2)

The formation of CF_4 and $CF_3O_3CF_3$ shows that a substantial fraction of the reaction of F atoms with CF_2BrH proceeds via

a mechanism other than simple hydrogen abstraction. There is only one reaction that can form $CF_3O_3CF_3$ in the chamber, namely

$$CF_3O + CF_3O_2 \rightarrow CF_3O_3CF_3 \tag{20}$$

 CF_3O_2 and CF_3O radicals are formed following reaction of CF_3 radicals with O_2 . The detection of $CF_3O_3CF_3$ as a minor product shows that CF_3 radicals are formed. The CF_4 product may also reflect the formation of CF_3 radicals in the chamber and their subsequent reaction with F_2 :

$$CF_3 + F_2 \rightarrow CF_4 + F \tag{21}$$

$$CF_3 + O_2 + M \rightarrow CF_3O_2 + M$$
(22)

At 296 K and 700 Torr total pressure $k_{21} = 7.0 \times 10^{-14}$ (ref 26) and $k_{22} = 3.5 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.²⁷ Hence, $k_{22}/k_{21} = 50$. For the conditions of experiment no. 1 (see Table 3) and assuming all the CF₄ is attributable to reaction 21, then the O₂ impurity is present at a concentration which is 2.2% of the F₂, i.e., 9.9 mTorr. The presence of such a small amount of O₂ from a combination of incomplete evacuation, leaks of air into the chamber, and/or the presence of O₂ in the reactant gases is not unreasonable.

5. Discussion

The pulse radiolysis experiments described in section 3 demonstrate that the reaction of F atoms with CF₂BrH proceeds substantially via the formation of an adduct, CF₂BrH--F, which at 296 K decomposes rapidly to regenerate CF₂BrH and F atoms and to give other products. Let us consider how the results obtained using the FTIR smog chamber system fit in with this picture. Several consistent points emerge. First, the observation of loss of CF₂BrH following UV irradiation of CF₂BrH/F₂ mixtures shows that either not all of the reaction gives the adduct, or not all of the adduct decomposes to regenerate the initial reactants, or both. Second, the observation of CF₃O₃CF₃ products cannot be explained if the reaction of F atoms with CF₂BrH proceeded via a simple hydrogen abstraction mechanism. There are several thermodynamically feasible decomposition pathways for the adduct:

$$CF_2BrH--F \rightarrow CF_2BrH+F$$
 (-5)

$$CF_2BrH--F \rightarrow CF_2Br + HF$$
 $\Delta H = -32 \text{ kcal mol}^{-1}$
(23)

$$CF_2BrH--F \rightarrow CF_2 + Br + HF \qquad \Delta H = +3 \text{ kcal mol}^{-1}$$
(24)

 CF_2BrH --F $\rightarrow CF_3Br$ +H $\Delta H = -13 \text{ kcal mol}^{-1}$ (25)

 $CF_2BrH--F \rightarrow CF_3 + HBr$ $\Delta H = -30 \text{ kcal mol}^{-1}$ (26)

 $CF_2BrH--F \rightarrow CF_3H + Br \qquad \Delta H = -49 \text{ kcal mol}^{-1}$ (27)

The heats of reaction above were derived using $\Delta H_f(CF_3) = -111$ kcal mol⁻¹,²⁸ $\Delta H_f(CF_2BrH) = -109$ kcal mol⁻¹, $\Delta H_f(CF_2Br) = -57$ kcal mol⁻¹ (estimated by interpolation of literature data for CF₃H and CBr₃H, and CF₃ and CBr₃²³), and $\Delta H_f(CF_2BrH-F) = -90$ kcal mol⁻¹ (assumed, for the sake of argument, equal to $\Delta H_f(CF_2BrH) + \Delta H_f(F)$). Let us consider these possibilities in turn and assess their likely importance based upon the experimental observations presented herein. As discussed in sections 3.2–3.5, the evidence from the pulse

radiolysis experiments shows that decomposition to reactants (pathway -5) is the main fate of the adduct. The question then is which of the remaining possibilities account for that fraction of the adduct loss which is not simple decomposition into reactants. The results from the FTIR study shed some light on this issue. CF₃H is relatively unreactive toward F atoms¹⁵ and, if formed in the FTIR experiments, will not be lost via secondary reactions. The absence of any observable CF₃H shows that pathway 27 is of no importance. For those experiments employing the largest [F₂]₀, CF₄ was the dominant product accounting for up to 70% of the CF₂BrH loss. Pathways 23 and 25 lead indirectly (via the $CF_2Br + F_2$ reaction) or directly to CF₃Br and not CF₄, so it appears these pathways are, at most, of minor importance. Pathway 26 leads to CF₄ formation via reaction of the CF₃ radical with F₂ and so could be important. In the presence of 700 Torr of air, CF3 radicals are converted essentially quantitatively into CF₃O₃CF₃.²⁵ The observation of 100% yield of COF2 in CF2BrH/F2/air experiments shows that in 700 Torr of air diluent pathway 26 is not a significant loss of the adduct, i.e., if reaction 26 is responsible for the observed CF₄ in the N₂ experiments, then there must be a reaction of the adduct with O₂ to give directly, or indirectly, COF₂ in the experiments conducted in air diluent.

In the pulse radiolysis experiments we have shown that the decomposition of the adduct gives a substantial (20–72%) yield of CF₂ radicals. Hence, we conclude that pathway 24, although slightly endothermic, is of importance. There is insufficient kinetic data concerning the chemistry of CF₂ radicals to predict their behavior in the FTIR smog chamber experiments. It is conceivable that in the presence of 2–4 Torr of F₂ the CF₂ radicals react to give CF₄, but in the presence of trace amounts of air they react to give COF₂ exclusively.

6. Conclusion

Halogen atom adducts have been observed in solution; see, for example, refs 29-31. These adducts are described as charge-transfer complexes according to the Mulliken theory.³² We present here a large body of self-consistent kinetic and mechanistic data which shows that the reaction of F atoms with CF₂BrH gives an adduct in the gas phase. The adduct is in dynamic equilibrium with CF₂BrH and F atoms. The adduct can also decompose to CF₂ radicals and other products. Further work is needed to assess if this novel reaction mechanism is important in reaction of F atoms with other brominated compounds.

Acknowledgment. We thank Steve Japar (Ford Motor Co.) for a critical reading of the manuscript.

References and Notes

(1) World Meteorological Organization, Global Ozone Research and Monitoring Project-Report No. 20; Scientific Assessment of Stratospheric Ozone, appendix; AFEAS Report, 1989; Vol. 2, Chapter 6.

- (2) Atkinson, R. J. Phys. Chem. Ref. Data 1989, Monograph No. 1.
- (3) Wallington, T. J.; Nielsen O. J. Chem. Phys. Lett. 1991, 187, 33.
 (4) Wallington, T. J.; Ball, J. C.; Nielsen, O. J.; Bartkiewicz, E. J.
- Phys. Chem. 1992, 96, 1241.
 (5) Nielsen, O. J.; Ellermann, T.; Bartkiewicz, E, Wallington, T. J.;
- Hurley, M. D. Chem. Phys. Lett. **1992**, 192, 82.
- (6) Nielsen O. J.; Ellermann, T; Sehested, J.; Bartkiewicz, E.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1992, 24, 1009.
 (7) Sehested, J.; Wallington T. J. Environ. Sci. Technol. 1993, 27, 146.
- (7) Sehested, J.; Wallington T. J. *Environ. Sci. Technol.* 1993, 27, 146.
 (8) Nielsen, O. J.; Ellermann, T.; Sehested, J.; Wallington, T. J. *J. Phys. Chem.* 1992, 96, 10875.
- (9) Sehested, J.; Ellermann, T.; Nielsen, O. J.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. **1993**, 25, 701.
- (10) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.
 (11) Nielsen, O. J. Risø-R-480, 1984.

(12) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667.

(13) Møgelberg, T. E.; Sehested, J.; Bilde, M.; Wallington, T. J.; Nielsen, O. J. J. Phys. Chem., in press.

(14) Capellos, C.; Bielski, B. H. J. Kinetic Systems; Wiley & Sons: New York, 1972

- (15) Wallington, T. J.; Hurley, M. D.; Shi, J.; Maricq, M. M.; Sehested, J.; Nielsen, O. J.; Ellermann, T. Int. J. Chem. Kinet. **1993**, 25, 651.
- (16) Sharpe, S. Hartnett, B.; Sethi, H. S.; Sethi, D. S. J. Photochem. 1987, 38, 1.
- (17) Duperrex, R.; Bergh, H. J. Chem. Phys. 1979, 71, 3613.
 (18) Chaudhury, P. K. J. Phys. Chem. 1995, 99, 12084.

(19) Sehested, J.; Bilde, M.; Møgelberg, T.; Wallington. T. J.; Nielsen, O. J. J. Phys. Chem., submitted.

- (20) Wallington, T. J.; Hurley, M. D. Chem. Phys. Lett. 1992, 189, 437.
- (21) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;

Kurylo, M. J.; Howard, C. J.; Ravishankara A. R.; Kolb, C. E.; Molina, M. J. Jet Propulsion Laboratory Publication 94-26, Pasadena, CA, 1994.

(22) Mallard, W. G.; Westley, F.; Herron, J. T.; Hampson, R. P. NIST Chemical Kinetics Database, version 6.0, NIST Standard Reference Data, Gaithersburg, MD, 1994.

(23) Lias, S. G.; Liebman, J. F.; Levin, R. D.; Kafafi, S. A. NIST Standard Reference Database; Structures and Properties, Version 2.01, Jan 1994.

(24) Nielsen, O. J.; Gamborg, E.; Sehested, J.; Wallington, T. J.; Hurley, M. J. J. Phys. Chem. 1994, 98, 9518.

(25) Nielsen, O. J.; Ellermann, T.; Sehested, J.; Bartkiewicz, E.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1992, 24, 1009.

- (26) Plumb, I. C.; Ryan, K. R. Ber. Bunsen-Ges Phys. Chem. 1986, 6, 11.
- (27) Kaiser, E. W.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1995, 27, 205.
 - (28) Schneider, W. F.; Wallington, T. J. J. Phys. Chem. 1993, 97, 12783.
 - (29) Gover, T. A.; Porter, G. Proc. R. Soc. 1961, A262, 476.
 - (30) Bühler, R. E. J. Phys. Chem. 1972, 76, 22.
- (31) Fornier, P. V.; Bonneau, R.; Joussout-Dubien, J. Chem. Phys. Lett. **1973**, 19, 2.
- (32) Mulliken, R. S.; Person, W. B. Molecular Complexes; Wiley & Sons: New York, 1969.

JP9530111