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Interest in saturated N-heterocycles as scaffolds for the synthesis of bioactive molecules is increasing. Reliable and
predictable synthetic methods for the preparation of these compounds, especially medium-sized rings, are limited. We
describe the development of SnAP (Sn amino protocol) reagents for the transformation of aldehydes into seven-, eight-
and nine-membered saturated N-heterocycles. This process occurs under mild, room-temperature conditions and offers
exceptional substrate scope and functional-group tolerance. Air- and moisture-stable SnAP reagents are prepared on a
multigram scale from inexpensive starting materials by simple reaction sequences. These new reagents and processes
allow widely available aryl, heteroaryl and aliphatic aldehydes to be converted into diverse N-heterocycles, including
diazepanes, oxazepanes, diazocanes, oxazocanes and hexahydrobenzoxazonines, by a single synthetic operation.

C
ross-coupling reactions for the elaboration of heteroaromatics
have revolutionized organic synthesis and influenced enor-
mously the synthesis of biologically active small molecules1–3.

Recently, well-recognized limitations in the solubility, pharma-
cokinetics, bioavailability and intellectual property positions of
heteroaromatics have led many scientists to favour saturated
N-heterocycles in their drug-development efforts4–8. The shift
towards saturated compounds, which may contain chiral centres
and be derived from larger rings or spirocyclic structures, raises syn-
thetic challenges that are not addressed by the convenience and pre-
dictability of conventional metal-catalysed cross-coupling reactions.

In the search to provide alternatives to the cross-coupling of satu-
rated N-heterocycles, recently we introduced SnAP (Sn amino
protocol) reagents for the synthesis of thiomorpholines from alde-
hydes9. This process employs widely available aliphatic, aryl and het-
eroaryl aldehydes as cross-coupling substrates and operates under
mild conditions. It affords directly N-unprotected products, has out-
standing substrate scope and offers an easily recognized retrosynthetic
disconnection for the preparation of mono-, di- and trisubstituted
thiomorpholines. Preliminary mechanistic studies invoked the oxi-
dative generation of a sulfur-stabilized primary carbon-centred
radical followed by 6-endo-trig cyclization with an unactivated
imine to form the stable aminyl radical. This surprisingly facile cycli-
zation mode, which is favoured over the expected 5-exo-trig cycliza-
tion, encouraged us to explore the development of SnAP reagents
for the preparation of the even more challenging saturated N-hetero-
cycles derived from seven-, eight- or nine-membered ring scaffolds
with other heteroatoms, such as oxygen and nitrogen, to stabilize
the initially formed primary carbon-centred radical (Fig. 1).

In this report we disclose new SnAP reagents for the synthesis of
saturated N-heterocycles with seven-, eight- and nine-membered
rings, including oxazepanes, tetrahydrobenzoxazepines, diazepanes,
tetrahydrobenzodiazepines, oxazocanes and others. These studies
demonstrate, for the first time, that a sulfur-stabilized radical is
not necessary for the success of the SnAP reagents for N-heterocycle
synthesis. Despite the well-known challenges of forming larger rings10,
this radical-based process provides a convenient, user-friendly entry

into these relatively unexplored scaffolds for drug discovery and
development. It also further confirms the exceptional substrate
scope of the reaction, which accepts aryl, heteroaryl, aliphatic,
halogenated and glyoxylate aldehyde substrates.

Results
The requisite SnAP reagents suitable for the synthesis of seven-,
eight- and nine-membered saturated N-heterocycles, including
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Figure 1 | The SnAP-reagent concept. The concept of the simple

transformation of readily available aldehydes into substituted saturated

medium-ring N-heterocycles using SnAP reagents is shown. This approach

provides a convenient alternative to metal-catalysed cross-coupling reactions

and affords unprotected saturated heterocycles in one step. The selected

compounds are representative of the broad aldehyde scope and exemplify

the one-step synthesis of diazepanes, oxazepanes, benzoxazocanes and

other medium-ring saturated N-heterocycles that are difficult to access by

existing methods. Boc, tert-butoxycarbonyl.
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diazepanes, oxazepanes and others, were prepared on a multigram
scale from inexpensive starting materials by straightforward and
efficient routes (Fig. 2; see the Supplementary Information for
detailed synthetic procedures). The SnAP reagents are easily
handled air- and moisture-stable liquids that can be stored for
several weeks without decomposition.

With these new SnAP reagents in hand, we explored the trans-
formation of various aldehydes into substituted seven-, eight- and
nine-membered N-heterocycles. For the purposes of evaluation,
we used a single-reaction protocol for all of the SnAP reagents
and aldehyde substrates. We anticipate that substrate-specific
optimization of the results will be possible if higher yields or
faster reaction times are necessary. An advantage of this method
for N-heterocycle synthesis is the operationally simple reaction pro-
tocol: combination of the SnAP reagent with the aldehyde gives the
corresponding imine, which is cyclized with stoichiometric
Cu(OTf)2 (OTf¼OSO2CF3) and 2,6-lutidine in 4:1 CH2Cl2:HFIP
(HFIP¼ 1,1,1,3,3,3-hexafluoro-2-propanol) at room temperature
(r.t.) for 12 hours. The imines were isolated by filtration and evap-
oration to ensure full conversion before being subjected to cycliza-
tion. Alternatively, the imine-formation reaction can be diluted
with additional CH2Cl2 and transferred to the copper–ligand
mixture by a syringe equipped with a high-performance liquid
chromatography filter (10a, Table 1).

Synthesis of saturated seven-membered rings. We first targeted the
synthesis of oxazepanes, diazepanes and their derivatives, as these
structures are both attractive scaffolds for medicinal chemistry
and difficult to prepare by convenient, predictable synthetic
methods. The transformation of aldehydes into these substituted
seven-membered N-heterocycles using SnAP reagents 1–5 was
examined with a series of aryl, heteroaryl and aliphatic aldehydes
(Table 1). The reaction proceeded well with both electron-rich
and electron-poor aryl and heteroaryl aldehydes to give moderate-
to-good yields of 7-endo products. Similar results were obtained
with either the oxygen- or nitrogen-based SnAP reagents 1–5.
Imines prepared from aliphatic aldehydes, including the piperidine-
4-carboxaldehyde 10d, the cyclopropanecarboxaldehyde 14d
and the bulky pivaldehyde 14c, all afforded the products in
good yields. The sterically demanding o-tolualdehyde 11c was
incorporated in good yield and functional groups suitable
for further elaboration of the products, including esters,
organohalides, nitriles and protected amines; even unprotected
phenols (11a) were easily tolerated under the reaction conditions.
The primary side products observed in these reactions were the
protodestannylated imines, which we believe were formed by
competing hydrogen-atom transfer from HFIP. Benzannulated
and disubstituted products were accomplished using SnAP
reagents 2, 3 and 5. Diminished formation of destannylated
products and generally higher yields were observed for the
synthesis of the 5-phenyl-1,4-oxazepanes (11a–11d) and the
tetrahydrobenzodiazepines (14a–14d) using SnAP reagents 2 and
5, presumably because of a faster rate of cyclization of the
prealigned reacting groups. The cis relative stereochemistry
observed for the synthesis of the disubstituted oxazepanes (11a–11d)
was confirmed by X-ray crystallographic analysis of 11b (Table 1;
see the Supplementary Information).

Gram-scale synthesis using SnAP reagents. A larger-scale
synthesis using SnAP 4-oxazepane 1 (5 g) was performed with
standard laboratory techniques to demonstrate the ease and
scalability of our protocol and the avoidance of chromatographic
purification (Fig. 3; see Supplementary Information). All reagents
were used as purchased, and HCl salt formation of the crude
product as the sole purification technique afforded the desired
product in 75% yield with .98% purity (compare Table 1, entry 10a).

Synthesis of saturated eight- and nine-membered rings.
Encouraged by the successful synthesis of seven-membered ring
N-heterocycles, we explored the use of SnAP reagents for the
preparation of eight- and nine-membered N-heterocycles.
Substituted diazocanes, oxazocanes and their benzannulated
derivatives are currently little-known heterocycles, perhaps because
of the difficulty in preparing such molecules. The aldehyde scope
was similar to that of the synthesis of seven-membered rings,
including aryl, heteroaryl and aliphatic aldehydes (Table 2). As
anticipated, the cyclization yields were somewhat lower, with
protodestannylation of the imine again the major side product. In
these cases, the electronic properties of the aldehyde had a strong
influence on the cyclization. Electron-rich aldehydes, such as para-
anisaldehyde, afforded mostly the protodestannylated imine. Higher
dilution (0.02 M), the addition of CaSO4 to scavenge trace amounts
of water or heat (60 8C in 1,2-dichloroethane) did not help to
improve the ratio of product and protodestannylated side product.
Introducing an aromatic ring into the tether, such as in SnAP
tetrahydrobenzo-1,4-oxazocine (8), facilitated the cyclization and the
corresponding saturated N-heterocycles were isolated in good yields
with a broad substrate scope that included the electron-rich
aldehyde 17e; only a small amount of the protodestannylated imine
was observed. Although the yields of these substituted eight-
membered ring heterocycles are modest under the current
conditions, the facile synthesis of the starting materials and the lack
of convenient entry into these structures with other methods make
the use of SnAP reagents an attractive approach.

We also evaluated the formation of nine-membered ring
products with SnAP reagents and chose SnAP hexahydrobenzo-
1,4-oxazocine (9) for the initial attempts. The desired heterocyclic
compounds were isolated in low-to-moderate yields, but with a
broad substrate scope with respect to the aldehydes (18a–18d).
Further efforts to improve the efficiency of these challenging cycliza-
tions by variation of the ligand and oxidant are currently ongoing.
It is remarkable, however, that this process can easily access
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Figure 2 | SnAP reagents for seven-, eight- and nine-membered ring

synthesis. Stable and easily handled SnAP reagents prepared in short

reaction sequences. Steps are from commercially available materials. The

overall yields are from commercially available starting materials.
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eight- and nine-membered rings, even in cases where the SnAP
reagents contain no backbone elements that favour cyclization.

Discussion
Owing to the increasing interest in saturated N-heterocycles, many
efforts have been made to identify new synthetic methods for their
preparation. To date, the majority of these methods have focused on
elaboration of preformed five- and/or six-membered saturated N-
heterocycles11–15. Directed lithiation followed by transmetalation
and metal-catalysed cross-coupling is successful on pyrrolidine
and piperidine substrates, but has not proved useful for the elabor-
ation of larger rings or those that contain additional hetero-
atoms16,17. Only a few examples of the synthesis of saturated larger
rings with a broad substrate scope are reported, of which the ring-
closing metathesis (RCM) is the most powerful18,19. C–H functiona-
lization of N-benzyl-protected cyclic amines via the formation of
a-amino radicals has been applied to a single example of the aryla-
tion of N-benzyl azepane, as reported by Ito and Nakamura20,21.
Wolfe et al. reported a promising alkene aminoarylation for the
preparation of 2-carboaryl 1,4-tetrahydrobenzodiazepines22.
Currently, most preparations of diazepanes and related structures
are multistep sequences that proceed with the intermediacy of
lactams or by RCM, via products that must be reduced later23.

The use of SnAP reagents addresses the current difficulties in
preparing saturated N-heterocycles, including more-exotic

Table 1 | SnAP reagents for seven-membered rings.
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(0.50 mmol), 2,6-lutidine (0.50 mmol), 4:1 CH2Cl2:HFIP (10 ml), 12 hours, r.t. Yield values refer to isolated yields after purification.
*The imine-formation step was diluted with CH2Cl2 to 0.0625 M and transferred to the cyclization reaction by a syringe equipped with a filter.
†Diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopy of the unpurified reaction mixtures.
‡Relative stereochemistry was confirmed by X-ray analysis of (+)-11b (see Supplementary Information); others were assigned by analogy.
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Condensation of SnAP OA (13.2 mmol) and p-trifluoromethylbenzaldehyde

(13.2 mmol) afforded the corresponding imine, which was cyclized under

standard protocol conditions: stoichiometric Cu(OTf)2 and 2,6-lutidine in

CH2Cl2:HFIP 4:1 at r.t. for 12 hours. The product obtained after work-up was

purified by HCl salt formation to afford the desired product in 75% yield and

.98% purity. Reagents and solvents were used as purchased. TBME,

tert-butyl methyl ether.
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substitution patterns and ring sizes, by providing a simple, predict-
able reaction from aldehydes, one of the most widely available start-
ing materials. It also offers the unprecedented advantage of
delivering N-unprotected products directly, which obviates the
need to cleave the often difficult-to-remove aryl or benzylic protect-
ing groups used in C–H functionalization approaches to substituted
N-heterocyles. Our investigation to date implicates a radical-based
process initiated by copper-mediated oxidation of the carbon–tin
bond to form a heteroatom-stabilized primary radical9. This
mechanistic postulate provides an explanation for the remarkably
broad substrate scope, which conveniently allows the formation of
saturated N-heterocycles that bear aryl, heteroaryl, aliphatic and car-
boxylate groups. Although radical cyclizations onto alkenyls typi-
cally proceed via exo-bond formation, the SnAP reagents as aza
analogues always prefer formation of the endo products. This is pre-
sumably because of the formation of a stable nitrogen radical, which
is reduced by a Cu(I) species and the thermodynamic preference to
form a stronger C–C bond over a C–N bond (Fig. 4). Also, kinetic
factors, such as orbital overlap of the singly occupied molecular
orbital with the lowest occupied molecular orbital (p*) of the imine
that has the higher coefficient on the carbon or polarization effects
(the nucleophilic radical adds to the electrophilic imine carbon),
may contribute to this high regioselectivity24–27. Ring opening of poss-
ible exo radicals and reclosure to the endo products are inherently

unlikely and radicals of this type, being both benzylic and in the a-pos-
ition of an amine, are prone to dimerize because of their high stab-
ility24,26–28. The presence of exo products has not been detected,
regardless of the choice of aldehyde or SnAP reagent; the sole identifi-
able side products are those that arise from protodestannylation, which
indicates that the endo closure is a remarkably facile process.

This report documents SnAP reagents for the synthesis of unsub-
stituted seven-, eight- and nine-membered saturated N-heterocycles.
Our experience indicates that more-elaborate reagents containing
additional substitution patterns and chiral centres can also be
employed, and lead to more-complex products, often with excellent
diastereoselectivity. The same principles can also be applied to
SnAP reagents that lead to the formation of more common, but still
extremely valuable and difficult to prepare, targets, including morpho-
lines and piperazines. We anticipate further innovations in the design
of new SnAP reagents, as well as alternatives to the tin and copper
metals used in the current process. In the meantime, SnAP reagents
provide the first general approach to the synthesis of a wide range
of saturated N-heterocycles.

In summary, we have developed SnAP reagents for cross-coupling
with aldehydes to afford N-unprotected, substituted and saturated
medium-sized heterocycles. The cyclization takes place under mild
conditions mediated by copper. The process accepts a broad substrate
scope of electronically and sterically diverse aryl, heteroaryl, glyoxylic

Table 2 | SnAP reagents for eight and nine-membered rings.
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and aliphatic aldehydes and tolerates functional groups, including
esters, protected amines, organohalides, ethers, nitriles, free hydroxyl
groups and various heterocycles. The results from the present study
demonstrate that this cross-coupling of bench-stable SnAP reagents
with readily available aldehydes represents a valuable entry to the
synthesis of saturated medium-sized heterocycles.

Methods
The general procedure for the synthesis of the N-heterocycles using SnAP reagents
was as follows. To a solution of the aminotributylstannane–SnAP reagent
(0.50 mmol, 1.00 equiv.) in CH2Cl2 (2.5 ml) was added the corresponding aldehyde
(0.50 mmol, 1.00 equiv.) and molecular sieve (MS) 4A (�50 mg) under an inert
atmosphere at r.t. The reaction mixture was stirred for two hours and filtered
through a layer of Celite (�0.3 cm), rinsing with CH2Cl2. The filtrate was
concentrated under reduced pressure to afford the imine.

Separately, anhydrous Cu(OTf)2 (0.50 mmol, 1.00 equiv.) was added to a
solution of 2,6-lutidine (0.50 mmol, 1.00 equiv.) in HFIP (2.0 ml) in a dry Schlenk
flask and stirred at r.t. for one hour, during which a homogeneous suspension
formed. A solution of the imine (0.50 mmol, 1.00 equiv.) in dry CH2Cl2 (8.0 ml) was
added in one portion and the resulting mixture was allowed to stir at r.t. for 12 hours
(unoptimized reaction time). The reaction was quenched at r.t. with a mixture of
saturated aqueous NaHCO3 (4 ml) and 10% aqueous NH4OH (2 ml). The mixture
was stirred vigorously for 15 minutes, the layers were separated and the aqueous
layer was extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were
washed with H2O (3 × 5 ml) and brine (10 ml), dried over Na2SO4, filtered,
concentrated and purified by flash column chromatography on silica gel using a
precolumn of KF (�3 cm).
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published online 2 March 2014
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Protonation of the iminotributylstannane I by the HFIP cosolvent is followed

by oxidation with Cu(OTf)2 to generate Cu(I) and the a-heteroatom-

stabilized radical cation II (this heteroatom-stabilized radical was trapped

with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the adduct

characterized in prior work9). The polarized nucleophilic radical adds to the

internal imine in an endo fashion to generate the cyclic radical cation III,

which is reduced by Cu(I) to afford a Cu(II) product complex IV.
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