ÜBER RHODIUMPHOSPHAT RhPO₄ SOWIE ÜBER RHODIUMARSENOXID RhAsO₄ MIT RUTILSTRUKTUR

GÜNTER ENGEL

Fachhochschule Aalen, Fachbereich Chemie, D-7080 Aalen, Postfach 1728 (B.R.D.) (Eingegangen am 5. Mai 1980)

Zusammenfassung

Dargestellt wurden RhPO₄ und RhAsO₄. Die röntgenographische Untersuchung zeigte für RhPO₄ das Vorliegen der orthorhombischen Struktur des Hochtemperatur-CrPO₄. Die Gitterkonstanten lauten a = 1039.1 pm, b = 1309.1 pm und c = 639.1 pm. Für RhAsO₄ wurde die tetragonale Rutilstruktur mit a = 446.0 pm und c = 297.3 pm festgestellt. Diese Verbindung stellt ein Doppeloxid dar mit einer statistischen Verteilung von Rhodium und Arsen auf den Lagen der Metallatome. Die oktaedrische Koordination von Arsen wird durch das IR-Spektrum bestätigt.

Summary

RhPO₄ and RhAsO₄ were synthesized and an X-ray investigation showed that RhPO₄ crystallizes with the orthorhombic structure of high temperature CrPO₄. The lattice constants are a = 1039.1 pm, b = 1309.1 pm and c = 639.1 pm. The tetragonal rutile structure was found for RhAsO₄ with a = 446.0 pm and c = 297.3 pm. This compound represents a double oxide with a statistical distribution of rhodium and arsenic on the metal atom positions. The octahedral coordination of the arsenic is corroborated by the IR spectrum.

1. Einleitung

Im Rahmen einer Untersuchung zur Isotypie von Phosphaten, Arsenaten und Vanadaten von Engel und Belgardt [1] ergab sich ein Hinweis auf die Existenz der Verbindung RhPO₄. Dies war der Ausgangspunkt für die vorliegende Arbeit, da über das Phosphat und auch das Arsenat keine sonstigen Angaben gefunden wurden. Dagegen weiss man bereits seit einiger Zeit, dass RhSbO₄ [2], RhVO₄ [2, 3], ferner RhNbO₄ [2, 4] sowie RhTaO₄ [2] in der Rutilstruktur kristallisieren. Hierbei hat man anzunehmen, dass Rh³⁺ und das M⁵⁺-Kation statistisch auf den Ti⁴⁺-Lagen dieser TiO₂-Struktur verteilt sind [2].

Im Falle des Cr^{3^*} , dessen Kristallchemie wegen der Ähnlichkeit im Ionenradius mit der des Rh^{3^+} vergleichbar ist, wurde für $CrPO_4$ Dimorphie festgestellt [5]. Die Niedrigtemperatur (NT)-Modifikation (siehe Lit. 6 sowie Karte 9-348 in Lit. 7) kristallisiert im orthorhombischen $CrVO_4$ -Typ (auch CuCrO₄- oder NiSO₄-Typ genannt), der durch das Auftreten von tetraedrischen Anionen gekennzeichnet ist [8, 9]. Die Hochtemperatur (HT)-Form des CrPO₄ weist eine ebenfalls orthorhombische Zelle auf (siehe Karte 13-425 in Lit. 7), doch ist die Kristallstruktur bis jetzt nicht bekannt. Der Strukturtyp is anscheinend wenig verbreitet; als ein weiterer Vertreter war bisher nur CrAsO₄ bekannt [10].

2. Darstellung und chemisches Verhalten der Verbindungen

2.1. RhPO₄

Die Darstellung von RhPO₄ erfolgte ausgehend von Rh₂O₃·5H₂O der Firma Merck, für das ein Glühverlust bei 750 °C von 34% ermittelt wurde. Die salpetersaure Lösung dieses Hydrates wurde mit der dem Rh₂O₃-Gehalt entsprechenden Gewichtsmenge H₃PO₄ versetzt, das Gemisch vorsichtig eingedampft und der Rückstand in einen Sinterkorund-Tiegel überführt. Das Produkt wurde bei langsam gesteigerter Temperatur unter wiederholtem Homogenisieren geglüht und jeweils im abgeschreckten Zustand mittels Zählrohrdiffraktometer untersucht. Nach dem Tempern bei 700 °C erwies es sich als röntgenamorph. Bei 875 °C traten zahlreiche unidentifizierte Reflexe auf, die wohl einem Gemisch mehrerer Phasen entsprechen. Bei 925 °C waren daneben bereits die stärksten Reflexe des RhPO4 mit der Struktur des HT-CrPO₄ festzustellen, die nach dem Tempern bei 970 °C (24 h) alleine übrigblieben, siehe Tabelle 1. Eine langsam abgekühlte Probe lieferte das gleiche Röntgendiagramm. Das so hergestellte RhPO₄ ist bei 970 °C gewichtskonstant, zersetzt sich aber bereits bei 1000 °C allmählich unter Bildung von Rh₂O₃. Bei 1070 °C tritt binnen einiger Stunden ein völliger Zerfall ein, wobei elementares Rhodium entsteht. Der hierbei festgestellte Gewichtsverlust entspricht der angegebenen Zusammensetzung. RhPO₄ stellt ein dunkelbraunes Pulver dar, das sich als unlöslich selbst in konzentrierter HCl, HNO₃, H₂SO₄ und Königswasser erwies.

2.2. $RhAsO_4$

Die Verbindung wurde aus dem oben beschriebenen $Rh_2O_3 \cdot aq$ und der stöchiometrischen Menge $3As_2O_5 \cdot 5H_2O$ synthetisiert. Nach dem Tempern des Gemisches bei 600 °C waren bereits die beiden stärksten von den in Tabelle 2 angegebenen Reflexen festzustellen. Die Behandlung bei 820 °C erbrachte eine Verbindung mit dem eindeutigen Diagramm einer Rutilstruktur. Differentialthermoanalyse (DTA)-Versuche lieferten keinen Hinweis auf eine Phasenumwandlung. RhAsO₄ ist bei 820 °C gewichtskons-

TABELLE 1

h	k	1	I _{obs} ^a (%)	$d_{\rm obs}$ (Å)	d _{calc} (Å)	h	k	1	$I_{\rm obs}^{\rm a}$ (%)	d _{obs} (Å)	d _{calc} (Å)
0	2	0	37	6.58	6.55	0	5	1	7	2.420	2,423
0	1	1	73	5.76	5.74	4	1	1	3	2.368	2.367
1	0	1	77	5.46	5.44	0	4	2	10	2.287	2.286
2	0	0	47	5.21	5.20	3	4	1	2	2.228	2.229
1	2	1	14	4.19	4.19	2	5	1	28	2.197	2.196
2	2	0	2	4.08	4.07	4	3	1	7	2.107	2.107
2	1	1	23	3.857	3.853	4	4	0	12	2.034	2.035
0	4	0	9	3.274	3.273	2	1	3	8	1.9481	1.9491
0	0	2	11	3.194	3.196	3	0	3	3	1.8151	1.8146
3	0	1	23	3.045	3.045	2	3	3	3	1.7961	1.7963
2	3	1	8	2.963	2.961	4	5	1	12	1.7722	1.7718
1	4	1	19	2.806	2.805	3	5	2	3	1.7483	1.7483
2	4	0	100	2.769	2.769	4	4	2	24	1.7156	1.7163
2	0	2	65	2.721	2.722	0	5	3	6	1.6530	1.6524
4	0	0	33	2.597	2.598	0	8	0	15	1.6373	1.6363
2	2	2	8	2.515	2.513						

Röntgenpulverdiagramm von RhPO₄

Orthorhombisch, a = 1039.1 pm, b = 1309.1 pm, c = 639.1 pm. ^a Relative Intensitäten; Peakhöhen.

tant, zersetzt sich aber bei 880 °C (24 h) in erheblichem Ausmasse und bei 950 °C (12 h) vollständig zu Rh_2O_3 . Der Gewichtsverlust entspricht der angegebenen Formel. $RhAsO_4$ stellt ein schwarzbraunes Pulver dar, das wie $RhPO_4$ auch in konzentrierten Säuren unlöslich ist.

3. Erbegnisse und Diskussion

3.1. RhPO₄

Der Vergleich mit dem Röntgendiagramm von HT-CrPO₄ (Karte 13-425 in Lit. 7) zeigte, dass beide Strukturen einander entsprechen und ermöglichte eine einwandfreie Indizierung, siehe Tabelle 1. Auffallend ist, dass sich in keinem Stadium der Darstellung von RhPO₄ eine zu NT-CrPO₄ analoge Modifikation nachweisen liess. Auch die DTA-Untersuchung erbrachte keinen Hinweis auf eine Phasenumwandlung. Allerdings stellt auch bei CrPO₄ die Bildung der HT-Modifikation einen irreversiblen Vorgang dar [5, 9]. Einen Unterschied zu Cr³⁺ zeigt Rh³⁺ ferner dadurch, dass es keine Verbindung bildet, die dem Bleichromphosphat Pb₃Cr(PO₄)₃ mit Eulytinstruktur [11] entspräche. Bei der Reaktion zur Darstellung von "Pb₃Rh(PO₄)₃" wurde stattdessen folgender Verlauf röntgenographisch nachgewiesen

 $2Pb_3(PO_4)_2 + 2RhPO_4 \rightarrow 3Pb_2P_2O_7 + Rh_2O_3$

Die Gitterkonstanten von RhPO₄ sind in Tabelle 1 angegeben. Sie wurden mittels einer Guinier-Aufnahme erhalten, die mit Silizium (a = 543.05 pm)

TABELLE 2

h	k	1	d _{obs} (Å)	d _{calc} (Å)	I _{obs} ^a (%)	I_{calc}^{b}
1	1	0	3.156	3.154	100	100.1
1	0	1	2.475	2.474	68	68.3
2	0	0	2.229	2.230	14	17. 1
1	1	1	2.166	2.163	6	5.6
2	1	0	1.994	1.995	2	1.8
2	1	1	1.657	1.656	58	53.2
2	2	0	1.577	1.577	11	13.5
0	0	2	1.487	1.486	6	6.5
3	1	0	1.410	1.410	7	10.4
2	2	1		1.393	0	0.1
1	1	2	1.344	1.345	9	10.8
3	0	1	1.330	1.330	11	15.3
3	1	1		1.274	0	0.2
3	2	0		1.237	0	0.0
2	0	2	1.235	1.237	5	4.5
2	1	2	_	1.192	0	0.3
3	2	1	1.143	1.142	8	7.7
4	0	0	1.114	1.115	2	2.7
4	1	0	_	1.082	0	0.2
2	2	2	1.081	1.082	6	6.1

Röntgenpulverdiagramm von RhAsO4

Tetragonal, a = 446.0 pm, c = 297.3 pm.

^a Relative Intensitäten; Peakflächen.

^bBezüglich der für die Rutilstruktur berechneten Intensitäten I_{calc} siehe Text. Die Skalierung erfolgte durch Minimieren der Summe $\Sigma (I_{obs} - I_{calc})^2$.

geeicht wurde. Wie bei HT-CrPO₄ kommen die orthorhombischen Raumgruppen *I*222, *I*2₁2₁2₁, *Imm*2 sowie *Immm* in Frage. Das IR-Spektrum von RhPO₄, das wesentlich schärfere Banden als das von HT-CrPO₄ aufweist, überrascht durch seinen Bandenreichtum. Im Bereich von 1200 - 230 cm⁻¹ treten 20 Banden und vier Schultern auf; die intensivsten liegen bei 1190 (Schulter), 1163, 1110, 905, 885 (Schulter), 800, 636 sowie 530 cm⁻¹. Möglicherweise hat man trotz der Einfachheit der chemischen Zusammensetzung bei der Struktur von RhPO₄ mit Überraschungen zu rechnen.

Die Untersuchung des magnetischen Verhaltens (Faraday-Waage, Raumtemperatur) ergab für RhPO₄ einen schwachen Paramagnetismus mit der Suszeptibilität $\chi_g = 0.7 \times 10^{-6}$ cm³ g⁻¹ (elektromagnetische Einheit). Ein geringer Paramagnetismus beziehungsweise ein paramagnetischer Anteil wurde auch bei Rh₂O₃ [12] beziehungsweise bei anderen Verbindungen des dreiwertigen Rhodiums [13] gefunden. Diese Erscheinung wird auf das vorliegen eines niedrig liegenden angeregten Elektronenzustandes zurückgeführt [13], da dem Grundzustand des Rh³⁺ (d⁶, low spin) ein diamagnetisches Verhalten entspricht [14].

3.2. $RhAsO_4$

Das Vorliegen der Rutilstruktur bei RhAsO₄ bedeutet insofern eine Überraschung, als dabei Arsen eine oktaedrische Koordination durch Sauerstoff besitzt, im Gegensatz zu der üblichen Tetraederkoordination. Die Verbindung ist also nicht als Arsenat, sondern als Rhodiumarsenoxid zu bezeichnen. Im Röntgendiagramm konnten keine Überstrukturlinien festgestellt werden, wie sie etwa bei den Verbindungen im MoO₂-Typ [15], bei NbO₂ [16] beziehungsweise bei den Trirutilphasen [17] auftreten. Die einzige Auffälligkeit bei RhAsO₄ besteht darin, dass die Röntgenreflexe relativ breit sind. Die Halbwertsbreiten betragen das zwei- bis dreifache der Werte bei wohlkristallisiertem TiO₂. Eine Verschmälerung der Reflexe konnte auch durch langzeitiges Tempern bei 820 °C nicht erreicht werden.

In der Rutilstruktur mit der Raumgruppe $P4_2/mnm$ besetzen die Metallatome die feste Punktlage 2a in 0, 0, 0 und $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$; siehe z. B. Lit. 18. Die statistische Verteilung von Rhodium und Arsen auf diese Positionen wird durch die gemäss diesem Modell berechneten Röntgenpulverintensitäten in Tabelle 2 eindeutig belegt. Bei dieser Rechnung wurde für die in 4f liegenden Sauerstoffatome der freie Parameter x = 0.306 gewählt, wie er bei TiO₂ vorliegt [18]. Lorentz- und Polarisationsfaktor, Flächenmultiplizitäten sowie ein Temperaturfaktor nach Debye-Waller mit $B = 1 \times 10^4$ pm² wurden berücksichtigt. Die Formfaktoren für die ungeladenen Atome wurden aus [19] entnommen. Für die in Tabelle 2 aufgeführten Reflexe (unbeobachtete eingeschlossen) ergibt sich der Zuverlässigkeitsfaktor R = 0.077, wobei $R = \Sigma |I_{obs} - I_{cale}| / \Sigma I_{obs}$ ist.

[•]Obwohl die Tetraederkoordination bei Arsenaten den Regelfall darstellt, sind ausser RhAsO₄ doch einige weitere Beispiele für das Auftreten von AsO₆-Oktaedern bekannt. Diese Koordination liegt vor bei einem Teil der Arsenatome in $3As_2O_5 \cdot 5H_2O$ [20], in As_2O_5 [21] sowie in $Mg_{8,5}As_3O_{16}$ [22]. Eine Rutilstruktur mit statistischer Kationenverteilung weist auch das Hochdruck-AlAsO₄ auf, das aus der Quarzmodifikation bei 90 kbar entsteht [23]. RhAsO₄ fällt dadurch auf, dass hier die Rutilstruktur bereits bei Normaldruck ausgebildet wird. Bei dem zum Vergleich dargestellten CrAsO₄ beobachteten wir die Struktur des HT-CrPO₄, in Übereinstimmung mit Ronis [10].

Das IR-Spektrum von RhAsO₄ bestätigt die oktaedrische Koordination des Arsens. Oberhalb 250 cm⁻¹ treten lediglich zwei Banden (bei 737 cm⁻¹, sehr stark, und bei 350 cm⁻¹, mittelstark) sowie drei Schultern (bei 660, 485 und 395 cm⁻¹) auf. Das Spektrum entspricht bezüglich der Hauptbande somit dem der Rutilform von AlAsO₄, das nur oberhalb 667 cm⁻¹ aufgenommen wurde [23]. Es ähnelt ausserdem sehr stark dem der Rutilmodifikation von GeO₂, das bis hinab zu 250 cm⁻¹ bekannt ist [24]. Dagegen liegen die Valenzbanden von tetraedrischen XO₄-Gruppen (X = As, Ge) bei eindeutig höheren Wellenzahlen [23 - 25].

Wie bei RhPO₄ zeigte die magnetochemische Untersuchung auch bei RhAsO₄ einen schwachen Paramagnetismus mit $\chi_g = 0.9 \times 10^{-6}$ cm³ g⁻¹ (elektromagnetische Einheit). Aufgrund dieses Ergebnisses ist es wahrschein-

P46

lich, dass in der Verbindung im wesentlichen eine Verteilung der Oxidationsstufen gemäss Rh(III)As(V)O₄ vorliegt. Bei einer Verteilung entsprechend Rh(IV)As(III)_{0.5}As(V)_{0.5}O₄ hätte man für die Suszeptibilität einen Wert von etwa 5×10^{-6} cm³ g⁻¹ zu erwarten, wenn man für Rh⁴⁺ (d⁵) die low spin-Anordnung annimmt und eine starke antiferromagnetische Wechselwirkung ausschliesst.

Dank

Für die Anfertigung der Guinier-Aufnahmen bin ich Frau R. Apprich sehr dankbar, für die der IR-Spektren Herrn G. Kotzor. Für die Durchführung der magnetischen Messungen möchte ich Herrn Dr. O. Loebich, Institut für Edelmetalle und Metallchemie, Schwäbisch Gmünd, sehr herzlich danken.

Literatur

- 1 G. Engel und J. Belgardt, Diplomarbeit, Fachhochschule Aalen, 1979.
- 2 K. Brandt, Ark. Kemi Mineral. Geol., 17A (15) (1943) 1.
- 3 L. W. Vernon und W. O. Milligan, Texas J. Sci., 1 (1951) 82.
- 4 C. Keller, Z. Anorg. Allg. Chem., 318 (1962) 89.
- 5 M. W. Shafer und R. Roy, J. Am. Chem. Soc., 78 (1956) 1087.
- 6 R. C. L. Mooney, H. Kissinger und A. Perloff, Acta Crystallogr., 7 (1954) 642.
- 7 L. G. Berry (Hrsg.), *Powder Diffraction File*, Joint Committee on Powder Diffraction Standards, Philadelphia, Pennsylvania, 1975.
- 8 K. Brandt, Ark. Kemi Mineral. Geol., 17A (6) (1943) 1.
- 9 O. Muller und R. Roy, The Major Ternary Structural Families, Springer, Berlin, 1974.
- 10 M. Ronis, C.R. Acad. Sci., Ser. C, 271 (1970) 64.
- 11 G. Engel und W. Kirchberger, Z. Anorg. Allg. Chem., 417 (1975) 81.
- 12 A. N. Guthrie und L. D. Bourland, Phys. Rev., 37 (1931) 303.
- 13 J. Gavis und M. J. Sienko, J. Am. Chem. Soc., 77 (1955) 4983.
- 14 A. Weiss und H. Witte, Magnetochemie, Verlag Chemie, Weinheim, 1973.
- 15 A. Magnéli und G. Andersson, Acta Chem. Scand., 9 (1955) 1378.
- 16 A. Magnéli, G. Andersson und G. Sundquist, Acta Chem. Scand., 9 (1955) 1402.
- 17 G. Bayer, Ber. Dtsch. Keram. Ges., 39 (1962) 535.
- 18 W. H. Baur und A. A. Khan, Acta Crystallogr., Sect. B, 27 (1971) 2133.
- H. P. Klug und L. E. Alexander, X-Ray Diffraction Procedures, Wiley, New York,
 2. Aufl., 1974.
- 20 K.-H. Jost, H. Worzala und E. Thilo, Acta Crystallogr., 21 (1966) 808.
- 21 M. Jansen, Z. Anorg. Allg. Chem., 441 (1978) 5.
- 22 P. W. Bless und E. Kostiner, J. Solid State Chem., 6 (1973) 80.
- 23 A. P. Young, C. B. Sclar und C. M. Schwartz, Z. Kristallogr., 118 (1963) 223.
- 24 E. R. Lippincott, A. van Valkenburg, C. E. Weir und E. N. Bunting, J. Res. Natl. Bur. Stand., 61 (1958) 61.
- 25 S. D. Ross, Inorganic Infrared and Raman Spectra, McGraw-Hill, London, 1972.