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Abstract : Synthesis of 3-epi-hydroxymugineic acid (2) and distichonic acid A (3), phytosiderophores 

from graminaceous plants, has been efficiently achieved for the first time. 

A series of iron-chelating amino acids has been isolated from graminaceous plants1 They are 

called phytosiderophores which promote uptake and transport of iron required for chlorophyll 

biosynthesis in higher plants. The most typical phytosiderophore is mugineic acid (l), which has been 

isolated from barley and well investigated its structural feature as well as its iron transport 

mechanism.’ 12 3-Epi-hydroxymugineic acid (2)’ ,314 and distichonic acid A (3)’ are also 

phytosiderophores isolated from graminaceous plants. In our preceding paper,5 we have described an 

efficient synthesis of mugineic acid (1)6 utilizing the phenyl group as the carboxyl synthon. We now 

wish to report the first synthesis of 3-epi-hydroxymugineic acid (2) and distichonic acid A (3) by the 

analogous strategy. 

MugineicAcid(l):X=H 
3-Epi-hydroxymugineic Acid (2) : X = OH 

Distichonic Acid A (3) 

Prior to the synthesis of 2, we first investigated the synthetic route to (SS)-hydroxy- 

azetidinecarboxylic acid, as shown in Scheme I. We employed (2R,3R)-2,3_epoxycinnamyl alcohol (4) 

as a starting material, which was quantitatively converted to the azido alcohol 5 according to our 

procedure reported in the preceding paper. 5 Sequential protection of the primary and secondary 

hydroxyl functions of 5 with p-toluenesulfonyl chloride (TsCI) and then tert-butyldimethylsilyl 

chloride (TBSCI) afforded the O,O-diprotected azide 6. Transfer hydrogenation of 6 followed by 

tosylation of the resulting amine gave the N,O-ditosylate 7, [a]25~ - 15.2” (c 1.11, CHCl3), in 22% 

yield from 4. Treatment of 7 under basic conditions furnished the required azetidine 8a, mp 103- 

106”C, (a]25D -145.7” (c 0.65, CHCl3), in 75% yield, accompanied with the desilylated alcohol 8b, 

mp 122-124’C, [a]25D - 185.3” (c 0.36, CHCI3), in 18% yield. The latter was easily converted to 

the former by silylation with TBSCI in 99% yield. Oxidation of 8a with ruthenium chloride-sodium 

periodate,5*8 followed by methyl esterification with trimethylsilyldiazomethane (TMSCHN2)9 gave the 

azeHdinecarboxylic acid derivative 9, mp 67-69OC, [a125D - 56.2” (c 0.16, CHCl3), in 42% yield. 
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(a) NaNa, NH4CI, MeOH, H20, 70°C 10h. 5 (b) TsCI, Et3N, CH2Cl2, rt, 4h. (c) TBSCI, imidazole, 
DMF, rt, 19h. (d) 5% Pd-C, HC02NH4. MeOH, rt, Ih. (e) TsCI, DMAP, E$N, CH2Cl2, rt, 3h. (f) NaH, 
MeOH, rt, 11 h. (g) TBSCI, imidazole, DMF, 50°C 3h. (h) RuCl3, Nal04, EtOAc, CH3CN, H20, rt, 40h. 
(i) TMSCHN2, benzene, MeOH, rt, 10min. 
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(a) (COCI)2, DMSO, Et3N, CH2Cl2, -76°C + 0°C 2h. (b) Zn, 1M aq. AcONHq, THF, rt, 10h. (c) 1M 
NaBH3CN in THF, AcOH (leq), MeOH, O”C, 16h. (d) TBAF, AcOH, THF, rt, 17h. (e) MsCI, Et3N, 
CH2C12,0°C, lh. (f) KHC03, CH3CN, 60°C 42h. (g) Zn, AcOH, THF. rt, 13h. (h) 17. 1M NaBH3CN in 
THF, AcOH (leq), MeOH, O”C, 14h. (i) constant boiling HCI, anisole, THF, rt, 24h. (i) Dowex 50W x 4 
(H20 then 15% aq. NH3). (k) ODS silica gel, H20. (I) recrystallization from H20-EtOH. 
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Thus we have efficiently achieved the first synthesis of two phytosiderophores, 3epi- 

hydroxymugineic acid (2) and distichonic acfd A (3). The synthetic methodologies adopted here will have 

generality in the synthesis of the other hydroxy amino acid derivatives. Furthermore, easy availability 

of these iron-chelating amino acids will be very helpful for the investigation of plant physiology. 
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