

0277-5387(93)E0098-K

SYNTHESIS AND SPECTROSCOPIC STUDIES OF RUTHENIUM(II) SELENOETHER COMPLEXES: STRUCTURE OF TRANS-[Ru{PhSe(CH₂)₂SePh}₂Cl₂]

NEIL R. CHAMPNESS, WILLIAM LEVASON,* STEPHEN R. PREECE and MICHAEL WEBSTER

Department of Chemistry, University of Southampton, Southampton, SO9 5NH, U.K.

(Received 1 October 1993; accepted 15 December 1993)

Abstract—The complexes *trans*-[Ru(L—L)₂X₂] [X = Cl, Br or I; L—L = bidentate ligand including PhSe(CH₂)₂SePh, MeSe(CH₂)₂SeMe and *o*-C₆H₄(TeMe)₂] have been prepared by reaction of RuCl₃ · xH₂O and LiX with the ligand in alcoholic solvents in the presence of a reducing agent. The complexes have been characterized by analysis, IR, UV–vis and ⁷⁷Se or ¹²⁵Te NMR spectroscopies and the Ru^{II}–Ru^{III} redox potentials established by cyclic voltammetry. The crystal structure of *trans*-[Ru{PhSe(CH₂)₂SePh}₂Cl₂] has been determined, giving Ru–Cl 2.413(1), 2.444(1), Ru–Se 2.433(1)–2.460(1) Å.

Ruthenium(II) complexes of the form *trans*-[Ru(L—L)₂X₂], where L—L is a bidentate dithioether and X are halogen ligands, are well known¹ but comparatively little has been reported for the corresponding selenoether and telluroether compounds.² Previous reports of compounds between diselenoether ligands and ruthenium are limited to ruthenium(III) species of the form [{Ru(L— L)Cl₃}_n],³ [{Ru₂(L—L)₃Cl₆}_n]^{3,4} and the anionic [Ru{MeSe(CH₂)₂SeMe}Cl₄]^{-.3,5} We have recently reported⁶ the synthesis of the ruthenium(III) diselenoether complexes *trans*-[Ru(L—L)₂X₂]BF₄ and now report a detailed study of the corresponding ruthenium(II) compounds and a rare example of a ruthenium telluroether complex.

EXPERIMENTAL

Physical measurements were made as described previously.⁷ Hydrated "RuCl₃· xH_2O " was obtained from Johnson Matthey and was used as supplied. Ligands were prepared by literature routes. Ruthenium thioether chloride and bromide complexes were prepared by the method of Chatt *et al.*¹ Synthesis

The ruthenium(II) complexes were prepared by two distinct routes as outlined below.

trans-[Ru{PhSe(CH₂)₂SePh}₂Cl₂]. To a deoxygenated solution of RuCl₃ · xH_2O (0.24 g, 0.94 mmol) in ethanol (50 cm³) and water (15 cm³), PhSe (CH₂)₂SePh (0.90 g, 2.65 mmol) was added and the mixture heated. Hypophosphorous acid (2 cm³) was added to the solution upon reaching reflux, and the solution changed from deep blue to pink in colour, and yielded a pink solid upon cooling. This precipitate was then filtered off, washed with diethyl ether and dried *in vacuo*. Yield 0.29 g, 36%. Found : C, 39.8; H, 3.2. Calc. for C₂₈H₂₈Cl₂RuSe₄: C, 39.4; H, 3.3%. v(Ru-Cl) = 318 cm⁻¹.

trans-[Ru{MeSe(CH₂)₂SeMe}₂Cl₂]. A solution of RuCl₃ · xH₂O (0.31 g, 1.2 mmol) in ethanol was reduced, under an N₂ atmosphere, with five granules of zinc amalgam (prepared from zinc granules and a saturated HgCl₂ solution). This solution was stirred for 2 h and the zinc was removed under a steady flow of N₂. To this blue solution, MeSe (CH₂)₂SeMe (0.54 g, 2.5 mmol) was added by syringe and the mixture refluxed for 2 h, producing a brown suspension. The resultant solution was then cooled, filtered and the precipitate washed with ace-

^{*}Author to whom correspondence should be addressed.

tone. The combined washings and filtrate were then treated with diethyl ether and cooled overnight, precipitating a fawn solid. This solid was filtered off, washed with diethyl ether and dried *in vacuo*. Yield 0.06 g, 19%. Found: C, 15.7; H, 3.4. Calc. for $C_8H_{20}Cl_2RuSe_4$: C, 15.9; H, 3.3%.

The bromo complexes were prepared by refluxing the analogous chloro complex with a large excess of LiBr in ethanol for 10 h. *trans*-[Ru{PhSe (CH₂)₂SePh}₂Br₂]. Found : C, 35.9 ; H, 3.3. Calc. for C₂₈H₂₈Br₂RuSe₄ : C, 35.7 ; H, 3.0%). *trans*-[Ru{Me Se(CH₂)₂SeMe}₂Br₂]. Found : C, 13.9 ; H, 3.0. Calc. for C₈H₂₀Br₂RuSe₄ : C, 13.8 ; H, 2.9%.

The iodo complexes were prepared by refluxing the analogous chloro complexes with a large excess of LiI in ethanol for 10 h. *trans*-[Ru{PhS (CH₂)₂SPh}₂I₂]. Found : C, 39.4; H, 3.1. Calc. for C₂₈H₂₈I₂RuS₄: C, 39.7; H, 3.3%. *trans*-[Ru{Me S(CH₂)₂SMe}₂I₂]. Found : C, 15.9; H, 3.5. Calc. for C₈H₂₀I₂RuS₄: C, 16.0; H, 3.3%. *trans*-[Ru{PhSe (CH₂)₂SePh}₂I₂]. Found : C, 33.0; H, 2.9. Calc. for C₂₈H₂₈I₂RuSe₄: C, 32.5; H, 2.7%.

trans-[Ru{o-C₆H₄(TeMe)₂}₂Cl₂]. To a solution of RuCl₃ · xH₂O (0.22 g, 0.85 mmol), o-C₆H₄(TeMe)₂ (0.59 g, 1.65 mmol) was added and the reaction mixture refluxed for 2 h in 2-methoxyethanol (30 cm³). Upon addition of the ligand, a light brown solid precipitated which dissolved upon reaching reflux and the solution paled over 2 h reflux. The 2-methoxyethanol was removed under vacuum and the resulting solid dissolved in CH₂Cl₂. A fawn coloured solid was precipitated with diethyl ether, filtered off, washed with diethyl ether and dried *in vacuo*. Yield 0.42 g, 55%. Found : C, 21.7; H, 2.4. Calc. for C₁₆H₂₀Cl₂RuTe₄: C, 21.5; H, 2.2%.

Refluxing this solid in ethanol with a large excess of LiBr for 10 h produced a brown solid which was found to be insoluble in organic solvents.

Crystal data

 $C_{28}H_{28}Cl_2RuSe_4$, $M_r = 852.35$, triclinic, space group $P\overline{l}$, a = 11.610(2), b = 11.664(3), c = 11.752(2) Å, $\alpha = 101.41(2)$, $\beta = 104.90(2)$, $\gamma = 106.56(2)^0$, V = 1409.6 Å³, Z = 2, $D_c = 2.007$ g cm⁻³, F(000) = 820, $\lambda = 0.71069$ Å, μ (Mo- K_{α}) = 58.3 cm⁻¹, room temperature.

Data collection, structure solution and refinement

Dark brown air-stable crystals were obtained from CH_2Cl_2 solution by vapour diffusion of diethyl ether and mounted in glass capillaries. Cell dimensions were obtained from 25 reflections using an Enraf-Nonius CAD-4 diffractometer fitted with Mo radiation and graphite monochromator. The data collection using the same room temperature crystal $(0.58 \times 0.23 \times 0.10 \text{ mm}^3)$ recorded 5843 reflections ($\theta \le 26^\circ$: h 0–14; k – 14 to 14; l – 14 to 14). No crystal decay was noted during the experiment and an empirical ψ -scan absorption correction based on four reflections was applied [transmission: 57.4 (min.), 100.0% (max.)]. The normalized structure factors (E values) favoured the centrosymmetric space group $P\bar{1}$ and application of the direct methods strategy in SHELX-76⁸ yielded a solution showing seven large peaks (RuSe₄Cl₂). Subsequent structure factor and electron density calculations readily located the carbon atoms and a number of the expected hydrogen atoms, and all of the latter were introduced into the model in calculated positions [d(C-H) = 0.95 Å]. Fullmatrix least-squares refinement converged to R = 0.033 {317 parameters, 4631 reflections $[F > 3\sigma(F)]$, anisotropic (Ru, Se, Cl, C) and isotropic (H) atoms, $w = 1/\{\sigma^2(F) + 0.0003F^2\},\$ $R_{\rm w} = 0.050$, $|\max. \text{ shift/error}| = 0.07$ }. The residual electron density was in the range 0.56 to -0.83eÅ⁻³.

Neutral atom scattering factors and anomalous dispersion corrections were taken from SHELX 76^8 and ref. 9 (Ru, Se) and the calculations were carried out using SHELX 76 and ORTEP-II¹⁰ on an IBM 3090 computer. Selected bond lengths and angles are given in Table 1 and the discrete molecule is shown in Fig. 1.

RESULTS AND DISCUSSION

The reaction of $RuCl_3 \cdot xH_2O$ with a 1:2 ratio of diselenoether in refluxing 2-methoxyethanol in the presence of a reducing agent, in particular hypophosphorous acid, produces complexes of the form trans- $[Ru(L-L)_2Cl_2]$. In the absence of a reducing agent, polymeric ruthenium(III) species are produced, as reported previously.³ It was found that in the case of the ditelluroether complex no reducing agent was required, which is a reflection of the greater reducing ability of telluroethers compared to selenoethers and also the tendency of o-phenylene ligands to chelate rather than bridge metal centres. The trans-[Ru{MeSe(CH₂)₂SeMe}₂Cl₂] was prepared from the reaction of a zinc amalgam-reduced ethanolic solution of $RuCl_3 \cdot xH_2O$ with an excess of the ligand, as it was found that the use of hypophosphorous acid as reductant produced intractable oils in this case. Analogous bromide and iodide compounds were prepared by refluxing the corresponding chloride in ethanol with a large excess of LiX. The trans-[Ru(L-L)₂X₂] compounds were found to be soluble in common organic solvents, including dichloromethane and aceto-

Ru-Se(1)	2.433(1)		RuSe(4)	2.443(1)	
Ru—Se(2)	2.460(1)		Ru-Cl(1)	2.413(1)	
Ru—Se(3)	2.460(1)		Ru - Cl(2)	2.444(1)	
Se(1) - C(1)	1.951(6)		Se(3) - C(3)	1.977(6)	
Se(1) - C(11)	1.928(6)		Se(3) - C(31)	1.935(6)	
Se(2) - C(2)	1.976(6)		Se(4) - C(4)	1.974(6)	
Se(2)C(21)	1.930(6)		Se(4) - C(41)	1.932(6)	
C(1) - C(2)	1.495(8)		C(3)—C(4)	1.503(9)	
CC(phenyl)	1.354(10)-1	.406(9)			
Cl(1)-Ru-Se(1)	83.2(1)	Cl(1)— Ru — $Cl(2)$)	178.3(1)
Cl(1)-RuSe(2	!)	100.5(1)	Se(1)-Ru-Se(2))	85.9(1)
Cl(1)-Ru-Se(3)	83.0(1)	Se(1)-Ru-Se(3))	166.2(1)
Cl(1)-Ru-Se(4	b)	96.8(1)	Se(1)—Ru—Se(4))	95.7(1)
Cl(2)RuSe(1)	95.6(1)	Se(2)—Ru—Se(3)	95.8(1)
Cl(2)RuSe(2	!)	80.6(1)	Se(2)-Ru-Se(4)	162.7(1)
Cl(2)RuSe(3	5)	98.2(1)	Se(3)-Ru-Se(4)	86.7(1)
Cl(2)-Ru-Se(4	F)	82.1(1)			
Ru—Se(1)—C(1))	99.7(2)	Ru—Se(3)—C(3)		101.7(2)
Ru— $Se(1)$ — $C(1)$	1)	114.0(2)	Ru-Se(3)-C(31)	119.3(2)
Ru-Se(2)-C(2))	103.2(2)	Ru-Se(4)-C(4)		103.2(2)
Ru-Se(2)-C(2	1)	117.6(2)	Ru-Se(4)-C(41	i)	119.3(2)
C(1) - Se(1) - C(11)	100.8(2)	C(3)—Se(3)—C(3	31)	96.5(3)
C(2)-Se(2)-C(21)	97.7(2)	C(4)—Se(4)—C(4	41)	96.9(3)
Se(1)C(1)C(2)	107.4(4)	Se(3)-C(3)-C(4	4)	108.9(4)
Se(2)C(2)C(1)	111.3(4)	Se(4) - C(4) - C(3)	3)	107.5(4)
Se(1) - C(1) - C(1)	2)Se(2)	58.7	Se(3)C(3)C(4	4)Se(4)	62.9

Table 1. Selected bond lengths (Å) and angles (°) for trans-[Ru{PhSe(CH₂)₂SePh}₂Cl₂]

Fig. 1. The molecular structure of trans-[Ru{PhSe(CH₂)₂SePh}₂Cl₂] showing the atom labelling scheme. Thermal ellipsoids were drawn at the 50% probability level.

Compound	Colour	$E_{\rm max}^{a}$, 10 ³ cm ⁻¹ (ϵ , dm ³ mol ⁻¹ cm ⁻¹)
Ru{PhS(CH ₂) ₂ SPh} ₂ Cl ₂	orange	20.2 (105), 25.0 (150), 31.7 (1200)
$Ru{PhS(CH_2)_2SPh}_2Br_2$	pink	19.2 (20), 24.3 (50), 31.3 (460)
$Ru{PhS(CH_2)_2SPh}_2I_2$	orange	31.1 (660)
$Ru{MeS(CH_2)_2SMe}_2Cl_2$	yellow	23.3 (80), 29.7 (200) (sh)
$Ru{MeS(CH_2)_2SMe}_2Br_2$	lilac	21.0 (100), 28.1 (320)
$Ru{MeS(CH_2)_2SMe}_2I_2$	pink	19.5 (85), 27.2 (270)
$Ru{PhSe(CH_2)_2SePh}_2Cl_2$	pink	19.9 (330), 24.6 (460), 30.7 (1640)
$Ru{PhSe(CH_2)_2SePh}_2Br_2$	pink	19.5 (70), 24.6 (200), 30.8 (1200) (sh)
$Ru{PhSe(CH_2)_2SePh}_{2I_2}$	brown	20.7 (sh), 24.1 (2045), 31.3 (3070)
Ru{MeSe(CH ₂) ₂ SeMe} ₂ Cl ₂	fawn	23.5 (1020) (sh), 33.7 (4010) (sh)
Ru{MeSe(CH ₂) ₂ SeMe} ₂ Br ₂	brown	22.3 (670) (sh), 32.7 (3210) (sh)
$\operatorname{Ru}\left\{o-\operatorname{C}_{6}\operatorname{H}_{4}(\operatorname{TeMe})_{2}\right\}_{2}\operatorname{Cl}_{2}$	fawn	20.4 (270), 24.4 (820) (sh), 31.9 (sh)

Table 2. Selected spectroscopic data

^a Recorded in CH₂Cl₂.

nitrile. The *trans* geometry of the complexes was established from the X-ray crystal structure of *trans*-[Ru{PhSe(CH₂)₂SePh}₂Cl₂] and by UV-vis and ⁷⁷Se or ¹²⁵Te NMR spectroscopies.

UV-vis spectra

The UV-vis spectra of the complexes are typical of ruthenium(II) d^6 complexes of the form trans- RuL_4X_2 and the recorded data are shown in Table 2. The spectra consist of two weak absorptions to low energy, ca 24,000 and ca 20,000 cm⁻¹, which are assigned as d-d bands. A further, more intense absorption is observed at higher energies, ca 31,000 cm^{-1} , which is attributed to an M \rightarrow L charge transfer (CT) or, in those cases where a phenyl substituted ligand is present, the $\pi \to \pi^*$ transition. Of the d-d bands, the lower energy band is assigned as ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$ and the higher as ${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$, as has been reported previously for the thioether compounds¹ and for the analogous diphosphine complexes.^{11,12} The separation between the d-d bands is lower for the thio-, seleno- and telluroether complexes than for the corresponding phosphine complexes, consistent with the lower-field strength of the group 16 donor ligands. For some complexes the higher energy d-d band is obscured by the "tail" of the more intense $M \rightarrow L CT$ band and appears as a shoulder or not at all. In one case, that of trans-[Ru{PhS(CH₂)₂SPh}₂I₂], both d-d bands are obscured by the higher energy CT band.

Electrochemistry

Cyclic voltammograms were recorded for the complexes and the Ru^{II}-Ru^{III} redox potentials are shown in Table 3. All the complexes gave reversible

Ru^{II}–Ru^{III} couples, as had been observed previously for the corresponding ruthenium(III) cations,⁶ except that of *trans*-[Ru{PhS(CH₂)₂SPh}₂I₂], which was found to be irreversible. No evidence for a Ru^{III}–Ru^{IV} couple was observed for the seleno- or telluroether compounds, though the thioether complexes exhibited a number of irreversible oxidative waves to high potentials, greater than +1.5 V. The major variation in the redox potential is caused by changing the substituent on the donor atom from

Table 3. Electrochemical data for *trans*-[Ru(L---L)₂X₂]BF₄ and *trans*-[Ru(L---L)₂X₂] complexes with Group 16 donor ligands, $E_e^{\circ}(V vs SCE)$

Compound	Ru ¹¹ –Ru ^{111<i>a</i>}
$[Ru{PhS(CH_2)_2SPh}_2Cl_2]^{0/+}$	+0.65 ^{b,c}
$[Ru{PhS(CH_2)_2SPh}_2Br_2]^{0/+}$	$+0.70^{b}$
$[Ru{PhS(CH_2)_2SPh}_2I_2]^{0/+}$	$(+0.69)^{d,e}$
$[Ru{MeS(CH_2)_2SMe}_2Cl_2]^{0/+}$	$+0.55^{b,c}$
$[Ru{MeS(CH_2)_2SMe}_2Br_2]^{0/+}$	$+0.57^{b,c}$
$[Ru{MeS(CH_2)_2SMe}_2I_2]^{0/+}$	+0.60
$[Ru{PhSe(CH_2)_2SePh}_2Cl_2]^{0/+}$	$+0.57^{b,c}$
$[Ru{PhSe(CH_2)_2SePh}_2Br_2]^{0/+}$	$+0.59^{b,c}$
$[Ru{PhSe(CH_2)_2SePh}_2I_2]^{0/+}$	$+0.71^{d}$
$[Ru{MeSe(CH_2)_2SeMe}_2Cl_2]^{0/+}$	+0.43
$[Ru{MeSe(CH_2)_2SeMe}_2Br_2]^{0/+}$	$+0.56^{b,c}$
$[Ru{o-C_6H_4(TeMe)_2}_2Cl_2]^{0/+}$	+0.52

^{*a*} MeCN solution containing 0.1 mol dm⁻³ Buⁿ₄NBF₄. The Fe(η -C₃H₅)₂/Fe(η -C₅H₅)₂⁺ couple is at +0.41 V. ^{*b*} From ref. 6.

" Irreversible couple.

^c Data obtained from the ruthenium(III) complex.

^d Recorded in CH₂Cl₂ solution, due to insolubility in MeCN, containing 0.1 mol dm⁻³ Buⁿ₄NBF₄. The Fe(η -C₅H₅)₂/Fe(η -C₅H₅)₂⁺ couple is at +0.57 V.

Ruthenium(II) selenoether complexes

Compound	⁷⁷ Se δ (ppm) ^{<i>a</i>}	$\frac{\Delta\delta \text{ Se (av.)}^b}{153}$	
$Ru{PhSe(CH_2)_2SePh}_2Cl_2$	488, 491, 495, 498		
$Ru{PhSe(CH_2)_2SePh}_2Br_2$	488, 491, 494, 495, 496, 498	154	
$Ru{PhSe(CH_2)_2SePh}_{I_2}$	487, 491, 494, 498	153	
$Ru{MeSe(CH_2)_2SeMe}_2Cl_2^c$	344.5, 341.5, 339, 334	219	
$Ru{MeSe(CH_2)_2SeMe}_2Br_2^c$	346, 343, 342, 340, 336, 334, 330, 328	216	
Compound	¹²⁵ Te δ (ppm) ^d	$\Delta\delta$ Te (av.) ^{<i>b</i>}	
$Ru\{o-C_6H_4(TeMe)_2\}_2Cl_2$	885, 890, 893, 894, 908, 917	526	

Table 4. ⁷⁷Se and ¹²⁵Te NMR spectroscopic data for *trans*-[Ru(L-L)₂X₂] complexes

^a Recorded at 300 K in CH₂Cl₂ using an external Me₂Se reference.

^b Coordination shift, i.e. $\delta(\text{complex}) - \delta(\text{ligand})$.

^c Recorded at 300 K in acetone using an external Me₂Se reference.

^d Recorded at 300 K in CH₂Cl₂ using an external Me₂Te reference.

methyl to phenyl, the couple moving to more positive potentials with a phenyl-substituted ligand. This is consistent with observations made for the analogous diphosphine complexes.⁶ Varying the donor atom from sulphur to selenium results in a shift of the Ru^{II}-Ru^{III} to less positive potentials and this trend can be extended to the single telluroether complex. It can be seen from the potentials that variation of the halide ligand from chloride to bromide to iodide has little effect upon the Ru¹¹-Ru¹¹¹ redox potentials. Most of the complexes can be chemically oxidized^{1,6} to the ruthenium(III) analogues. However, the attempts to oxidize trans- $[Ru{PhS(CH_2)_2SPh}_2I_2]$ resulted in decomposition. Chlorine in CCl₄ decomposed the ditelluroether complex, whilst treatment with HNO₃-HBF₄ produced no visible change.

⁷⁷Se and ¹²⁵Te NMR spectra

⁷⁷Se{¹H} and ¹²⁵Te{¹H} NMR spectra were recorded for the appropriate complexes and the recorded data are shown in Table 4. The spectra are consistent with a *trans* configuration since the resonances were observed over a small range of values, whereas *cis* isomers would exhibit resonances in two distinct regions corresponding to δ (Se *trans* X) and δ (Se *trans* Se).¹³ The complexes have five possible invertomers, which could give a maximum of eight signals.¹⁴ The spectra generally consist of one intense band and a number of weaker signals (see Fig. 2 for a typical example). For the complex *trans*-

Fig. 2. Set H NMK spectrum of trans-[Ru{PhSe-(CH_2)₂SePh}₂Cl₂] in CH₂Cl₂.

 $[Ru{PhSe(CH_2)_2SePh}_2Cl_2]$, the isomer characterized by X-ray crystallography (see below) has all four selenium atoms equivalent and is probably the major species present in solution. Although one would not necessarily expect the predominant invertomer found in solution and the invertomer found in the crystal to be the same, with one exception¹⁵ in all previous examples studied this has been found to be the case.²

X-ray structure of trans-[Ru{PhSe(CH₂)₂SePh}₂Cl₂]

The structure consists of discrete species containing six-coordinate ruthenium with trans stereochemistry (Fig. 1); the molecule has no crystallographic symmetry. The Ru-Cl bond lengths (Table 1) may be compared with the values found¹⁶ in $[Ru(C_6H_{12}S_2)_2Cl_2]$ [2.445(1) Å] and $[Ru(C_6H_{12})_2Cl_2]$ $S_2O_2Cl_2$ [2.413(4) Å], being longer than the values found⁵ in the Ru^{III} anion $[Ru\{MeSe(CH_2)_2$ SeMe Cl_4 ⁻ [2.353(2), 2.344(2) Å for Cl *trans* Cl]. This latter compound also provides Ru-Se bond lengths [2.446(1), 2.457(1) Å] for comparison with the present compound [2.433(1)-2.460(1) Å]. The intraligand bond lengths are unexceptional and in addition to establishing the trans stereochemistry, the only other feature of note is the ligand conformation. Figure 1 shows that the coordinated diselenoether ligands have the DL conformation with all four selenium centres having the "S" absolute configuration. The ligand "bite" is about 86° and the Se--C--Se torsion angles close to the idealized 60° .

Acknowledgements—We thank the SERC for financial support (N. R. C. and S. R. P.) and Dr D. C. Povey

(University of Surrey) for the X-ray crystallographic data collection.

REFERENCES

- J. Chatt, G. J. Leigh and A. P. Storace, J. Chem. Soc. (A) 1971, 1380.
- 2. E. G. Hope and W. Levason, Coord. Chem. Rev. 1993, 122, 109.
- E. G. Hope, W. Levason, M. Webster and S. G. Murray, J. Chem. Soc., Dalton Trans. 1986, 1003.
- 4. G. Hunter and R. C. Massey, *Inorg. Nucl. Chem.* Lett. 1973, 9, 727.
- 5. E. G. Hope, H. C. Jewiss, W. Levason and M. Webster, J. Chem. Soc., Dalton Trans. 1986, 1479.
- N. R. Champness, W. Levason, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans. 1992, 3243.
- R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans. 1990, 2609.
- 8. G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge (1976).
- International Tables for X-ray Crystallography, Vol. 4, pp. 99, 149. Kynoch Press, Birmingham (1974).
- C. K. Johnson, ORTEP-II, Report ORNL-5138, Oak Ridge Laboratory, TN, U.S.A. (1976).
- 11. J. Chatt and R. G. Hayter, J. Chem. Soc., Dalton Trans. 1961, 772.
- 12. D. M. Klassen and G. A. Crosby, J. Molec. Spectrosc. 1968, 25, 398.
- D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray and G. L. Marshall, J. Chem. Soc., Dalton Trans. 1985, 1265.
- D. J. Gulliver, A. L. Hale, W. Levason and S. G. Murray, *Inorg. Chim. Acta* 1983, 69, 25.
- E. W. Abel, I. Moss, K. G. Orrell, V. Sik, D. Stephenson, P. A. Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1988, 521.
- B. W. Arbuckle, P. K. Bharadwaj and W. K. Musker, *Inorg. Chem.* 1991, **30**, 440.