48 Communications SYNTHESIS

The conversion of 4-hydroxycoumarins (1) into 3-allyl-4-hydroxycoumarins (4) cannot be accomplished via direct Claisen rearrangement of 4-allyloxycoumarins (2); the attempted rearrangement in N,N-dimethylaniline or at reduced pressure lead only to cyclization⁷. We have now found that the rearrangement of 2 (obtained from 1 and allyl bromide in the presence of potassium carbonate⁷) can be achieved in acetic anhydride in the presence of sodium acetate to give the corresponding 4-acetoxy-3-allylcoumarins (3); these compounds are readily hydrolyzed to the 3-allyl-4-hydroxycoumarins (4). [3-Alkenyl-4-hydroxycoumarins of the type 4 are known to possess anticoagulant activity⁸ and they are essential intermediates for the synthesis of naturally occurring furo[3,2-c]coumarins^{9,10}.]

The 3-allyl-4-hydroxycoumarins 4 are O-tosylated using tosyl chloride/potassium carbonate in acetone to give 3-allyl-4-tosyloxycoumarins (5) which are reductively detosyloxylated with zinc/hydrochloric acid to afford the desired 3-allylcoumarins (6).

The structure of compounds 2, 4, 5, and 6 were confirmed by microanalyses, I.R.-, and ¹H-N.M.R.-spectral data.

3-Allylcoumarins (6) from 4-Hydroxycoumarins (1); General Procedure:

4-Allyloxycoumarins (2): These compounds are prepared from 4-hydroxycoumarins (1) as described in Ref. ⁷.

4-Acetoxy-3-allylcoumarins (3): A mixture of the 4-allyloxycoumarin (2; 1 g), acetic anhydride (15 ml), and fused sodium acetate (1 g) is refluxed for 2 h and then poured onto crushed ice (30 g). The resultant solid product is isolated by suction, washed with water, and recrystallized from methanol.

3-Allyl-4-hydroxycoumarins (4): The 4-acetoxy-3-allylcoumarin (3; 1 g) is dissolved in ethanol (15 ml), conc. hydrochloric acid (5 ml) is

A Facile Synthesis of 3-Allylcoumarins

V. K. AHLUWALIA*, Chandra PRAKASH, Ranjana GUPTA
Department of Chemistry, University of Delhi, Delhi-110007, In-

3-Alkenylcoumarins have been isolated from natural products^{1,2,3}; however, a convenient method for their synthesis has hitherto not been described although a number of methods are available for the synthesis of their saturated analogs, 3-alkylcoumarins^{4,5}. Only 3-(1,1-dimethylallyl)-7-hydroxy-6-methoxycoumarin has been obtained in small quantities as an abnormal product from the Claisen rearrangement of 6-methoxy-7-O-(3-methyl-2-butenyl)-coumarin⁶. We describe now a convenient synthetic route to 3-allylcoumarins (6) starting from 4-hydroxycoumarins (1) via 3-allyl-4-hydroxycoumarins (4).

Table 1. 4-Acetoxy-3-allylcourarins (3)

3	X ¹	X ²	Yield [%]	m.p.	Molecular formula ^a	I.R. (KBr) ν [cm ⁻¹]	¹H-N.M.R. (CDCl ₃ /TMS) δ [ppm]
a	Н	Н	70	82–83°C	C ₁₄ H ₁₂ O ₄ (244.2)	1770 (OCOCH ₃); 1710 (C=O); 1605 (C=C)	2.42 (s, 3H, OAc); 3.20 (d, 2H, $J=6$ Hz, $-CH_2$ CH CH ₂); 4.92 (m, 2H, $-CH_2$ CH= CH ₂); 5.52 (m, 1H, $-CH_2$ CH= CH ₂); 7.46 (m, 4H, 5-H, 6-H, 7-H, 8-H)
b	OCH ₃	Н	75	87-88°C	C ₁₅ H ₁₄ O ₅ (274.3)	1765 (OCOCH ₃); 1715 (C · O); 1610 (C · C)	2.40 (s, 3H, —OAc); 3.22 (d, 2H, $J=6$ Hz, CH_2 — $CH=CH_2$); 3.86 (s, 3H, —OCH ₃); 5.02 (m, 2H, CH_2 — $CH=CH_2$); 5.65 (m, 1H, — CH_2 — $CH=CH_2$); 6.80 (d, 1H, $J=2$ Hz, 8-H); 6.85 (dd, 1H, $J=2$ Hz, $J=9$ Hz, 6-H); 7.25 (d, 1H, $J=9$ Hz, 5-H)
c	OCH ₃	OCH ₃	82	96–97°C	C ₁₆ H ₁₆ O ₆ (304.3)	1760 (OCOCH ₃); 1715 (CO); 1610, 1600 (CC)	2.40 (s, 3H, —OAc); 3.20 (d, 2H, $J=6$ Hz, —CH ₂ CH—CH ₂); 3.92, 4.0 (each s, each 3H, 7- and 8-OCH ₃); 5.10 (m, 2H, CH ₂ CH=CH ₂); 5.62 (m, 1H, —CH ₂ —CH=CH ₂); 6.90 (d, 1H, $J=9.5$ Hz, 6-H); 7.40 (d, 1H, $J=9.5$ Hz, 5-H)

^a The microanalyses were in satisfactory agreement with the calculated values; C, ± 0.21 ; H, ± 0.22 .

Table 2. 3-Allyl-4-hydroxycoumarins (4)

4	X [†]	X ²	Yield [%]	m.p.	m.p. reported	LR. (KBr) ν [cm - ']
a	H	H	60	139-140°C	139–140°C	3300 (OH); 1690 (C=O); 1600 (C=C)
b	OCH ₃	H	60	187188°C	187–188°C	3320 (OH); 1680 (C=O); 1600 (C=C)
c	OCH ₃	OCH ₃	70	157-158°C	152–155°C	3350 (OH); 1675 (C=O); 1605 (C=C)

Table 3. 3-Allyl-4-tosyloxycoumarins (5)

5	X ¹	X ²	Yield [%]	m.p.	Molecular formula	I.R. (KBr) ν [cm ⁻¹]	'H-N.M.R. (CDCI ₃ /TMS) δ [ppm]
a	Н	Н	70	120-121°C	C ₁₉ H ₁₆ O ₅ S (356.3)	1705 (C—O); 1610, 1600 (C—C)	2.48 (s, 3H, — C_6H_4 CH_3); 3.16 (d, 2H, $J=6$ Hz, — CH_2 — CH — CH_2); 5.6 (m, 2H, — CH_2 — CH — CH_2); 5.65 (m, 1H, — CH_2 — CH — CH_2); 7.28, 7.85 (each d, each 2H, $J=9.5$ Hz each, — C_6H_4 CH_3); 7.40 (m, 4H, 5-H, 6-H, 7-H, 8-H)
b	OCH ₃	Н	70	130-132°C	C ₂₀ H ₁₈ O ₆ S (386.4)	1710 (C=O); 1615, 1605 (C=C)	2.52 (s, 3H, $-C_6H_4$ — CH_3); 3.16 (d, 2H, $J=6$ Hz, $-CH_2$ — CH — CH_2); 3.88 (s, 3H, OCH_3); 5.05 (m, 2H, $-CH_2$ — CH — CH_2); 5.72 (m, 1H, $-CH_2$ — CH — CH_2); 6.75 (dd, 1H, $J=2$ Hz; $J=9$ Hz, 6-H); 6.82 (d, 1H, $J=2$ Hz, 8-H); 7.26 (d, 1H, $J=9$ Hz, 5-H); 7.42, 7.82 (each d, each 2H, $J=9$ Hz, $-C_6H_4$ — CH_3)
c	OCH ₃	OCH ₃	75	133–135 °C	C ₂₁ H ₂₀ O ₇ S (412.4)	1710 (C=O); 1610, 1600 (CC)	2.60 (s, 3H, $-C_6H_4-CH_3$); 3.22 (d, 2H, $J=6$ Hz, $-CH_2-CH-CH_2$); 4.10, 4.15 (each s, each 3H, 7-OCH ₃ , 8-OCH ₃); 5.14 (m, 2H, $-CH_2$ CH- $-CH_2$); 5.80 (m, 1H, $-CH_2-CH-CH_2$); 6.92 (d, 1H, $J=9.5$ Hz, 6-H); 7.40 (d, 1H, $J=9.5$ Hz, 5-H); 7.44, 7.84 (each d, each 2H, $J=9$ Hz, $-C_6H_4-CH_3$)

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.18 ; H, ± 0.18 .

added, and the mixture is refluxed for 30 min. It is then allowed to cool and the product 4 isolated by suction, washed with water, and recrystallized from methanol.

3-Allyl-4-tosyloxycoumarins (5): A mixture of the 3-allyl-4-hydroxycoumarin (4; 0.01 mol), acetone (50 ml), tosyl chloride (1.91 g, 0.01 mol), and potassium carbonate (2 g) is refluxed for 4 h. The inorganic salts are filtered off and washed with acetone and the combined filtrates are evaporated in vacuo to give product 5.

3-Allylcoumarins (6): The 3-allyl-4-tosyloxycoumarin (5; 1 g) is dissolved in ethanol (25 ml) and zinc (3 g) is added. Then, conc. hy-

drochloric acid (10 ml) is added, the mixture refluxed for 1 h. and then poured onto crushed ice (30 g). The resultant solid product is isolated by suction, washed with water, dried, and recrystallized from benzene/petroleum ether.

The authors are grateful to the University Grants Commission for financial help.

Table 4. 3-Allylcoumarins (6)

6	X'	X ²	Yield [%]	m.p.	Molecular formula ^a	I.R. (KBr) ν [cm ⁻¹]	¹ H-N.M.R. (CDCl ₃ /TMS) δ [ppm]
а	Н	Н	48	110-111°C	C ₁₂ H ₁₀ O ₂ (186.2)	1710 (C—O); 1610, 1600 (C—C)	3.20 (d, 2H, $J=6$ Hz, $-CH_2$ —CH—CH ₂); 5.10 (m, 2H, $-CH_2$ —CH—CH ₂); 5.82 (m, 1H, —CH ₂ —CH—CH ₂); 7.20 (m, 4H, 5-H, 6-H, 7-H, 8-H); 7.72 (s, 1H, 4-H)
b	OCH ₃	Н	50	124-125°C	C ₁₃ H ₁₂ O ₃ (216.2)	1715 (C=O); 1610. 1600 (C=C)	3.20 (d, 2H, $J=6$ Hz, —CH ₂ —CH—CH ₂); 3.90 (s, 3H, —OCH ₃); 5.10 (m, 2H, —CH ₂ —CH—CH ₂); 5.88 (m, 1H, —CH ₂ —CH—CH ₂); 6.78 (dd, 1H, $J=2$ Hz, $J=9$ Hz, 6-H); 6.86 (d, 1H, $J=2$ Hz, 8-H); 7.70 (s, 1H, 4-H); 7.78 (d, 1H, $J=9$ Hz, 5-H)
c	OCH ₃	OCH ₃	54	90-91 °C	C ₁₄ H ₁₄ O ₄ (246.2)	1715 (C=O); 1605, 1600 (C=C)	3.30 (d, 2H, $J=6$ Hz, $-CH_2-CH=CH_2$); 4.08 (s, 6H, 7-and 8-OCH ₃); 5.25 (m, 2H, $-CH_2-CH=CH_2$); 6.82 (m, 1H, $-CH_2-CH=CH_2$); 6.90 (d, 1H, $J=9.5$ Hz, 6-H); 7.62 (s, 1H, 4-H); 7.82 (d, 1H, $J=9.5$ Hz, 5-H)

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.16 ; H, ± 0.24 .

0039-7881/80/0132-0050 \$ 03.00

© 1980 Georg Thieme Publishers

^{*} Address for correspondence.

¹ J. Reisch, K. Szendrei, E. Minker, I. Novak, *Experientia* **24**, 992 (1968); *Tetrahedron Lett.* **1968**, 4395; **1970**, 4305.

² R. M. Brooker, J. H. Eble, N. A. Starkovsky, *Lloydia* 30, 73 (1967); C. A. 67, 43630 (1967).

³ A. G. Gonzalez et al., An. Quim. 72, 191 (1976).

⁴ W. H. Perkin, J. Chem. Soc. 1868, 53; 1877, 388.

⁵ K. M. Jainamma, *Indian J. Chem.* 13, 985 (1975).

⁶ R. D. Murray, Tetrahedron 27, 871 (1971).

⁷ V. N. Dholakia, K. N. Trivedi, J. Indian Chem. Soc. 48, 345 (1971).

⁸ J. Chemielewska, K. J. Cieslak, *Tetrahedron* 4, 135 (1958).

⁹ K. D. Kaufman et al., J. Org. Chem. 27, 2567 (1962).

¹⁰ R. Aneja, S. K. Mukerjee, T. R. Seshadri, *Tetrahedron* 4, 256 (1958).