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Construction of Consecutive Chiral Non-Racemic Quaternary and Tertiary
Carbon Centers: A Short Synthetic Route to (—)-Acetomycin

Jun'ichi Uenishi,*!* Motoi Kawatsura,!?! Daiji Ikeda,!*! and Nobuhiro Muraoka'?
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Regio- and diastereoselective nucleophilic substitution of 2-
methylacetoacetate with a chiral non-racemic n-allyl Pd com-
plex creates consecutive chiral non-racemic quaternary and
tertiary carbon centers. c-Bond formation between the re-
face of the m-allyl Pd complex and the re-face of the enol

acetoacetate was controlled by the o-(diphenylphosphanyl)-
arylcarboxylic acid ligand selectively. (-)-Acetomycin was
synthesized in seven steps using this key approach.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2003)

Introduction

Creation of a chiral non-racemic quaternary carbon
center is one of the challenging tasks in organic synthesis.[!]
Attempts to prepare a chiral non-racemic quaternary car-
bon center have been made by using chiral ligands in cata-
lytic reactions as well as chiral auxiliaries in stoichiometric
reactions, such as in the alkylation reaction,” Diels—Alder
reaction,P’] Heck reaction® and a few others.’] However,
the lack of a general method for the preparation of consecu-
tive chiral non-racemic quaternary and tertiary carbon cen-
ters led us to undertake this study.

Pd-catalyzed asymmetric allylic alkylation is a powerful
and widely used method for the carbon-carbon bond for-
ming reaction that generates, simultaneously, a new stereo-
genic carbon center.[®! For the construction of a chiral non-
racemic quaternary carbon center, investigations have been
performed on this reaction.[”l However, the reaction of a-
substituted unsymmetrical B-diketones or a-substituted -
keto esters with non-chiral unsymmetric or chiral allylic
acetate generally gives a mixture of regio- and stereoisomers
with poor selectivity. If a chiral non-racemic allyl acetate is
employed,® as shown in Scheme 1, the remaining problems
for this reaction would boil down to the control of regio-
and diastereoselectivities, because the allylic alkylation reac-
tion proceeds stereospecifically with net retention of the
stereochemistry. In this communication, we report the first
successful regio- and diastereo-control of Pd-catalyzed al-
lylic alkylation of chiral non-racemic allyl acetate with an
a-substituted B-keto ester, giving an optically pure B-keto
ester, having consecutive quaternary and adjacent tertiary
carbon centers.
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Scheme 1. Pd catalyzed allylic alkylation of a-substituted B-dike-
tone with chiral non-racemic allyl acetate

Results and Discussion

We chose (R)-2-acetoxy-4-phenyl-3-butene (1)!! as a chi-
ral non-racemic allyl acetate and ethyl 2-methylacetoacetate
(2) as a counter nucleophile. First, we examined the
Helmchen—Pfaltz oxazolidine ligands.'% When (R)-ip-
Phox (see Figure 1) was used with a catalytic amount of
Pd(OAc), with NaHMDS as a base in 1,4-dioxane, the re-
gioisomer 3 was exclusively yielded over the alternative re-
gioisomer 4 (Scheme 2). The diastereomeric ratio of 3 was
42:58, as determined by proton NMR spectroscopy (entry
D).

Mismatching of the regio- and stereoselectivity of 1 with
(S)-ip-Phox (Figure 1) gave a mixture of 3 and 4 in a 41:59
ratio, each regioisomer being obtained as approximately a
1:1 mixture of R and S diastereomers. The results for other

© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 3909



SHORT COMMUNICATION

J. Uenishi, M. Kawatsura, D. Ikeda, N. Muraoka

g 0
@ﬁ\:r\}.-< (j(‘;,\?"”< @Pphg /©/Pph2
PPhy PPh, COOH HOOC

(R)-ip-Phox (S)-ip-Phox L-1 L2
COOH RPPh
COOH Oe
L-3 L-4 L-5

Figure 1. Structures of phosphane ligands
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Scheme 2. Reaction of ethyl 2-methylacetoacetate with (R)-2-
acetoxy-4-phenyl-3-butene

conditions, including other ligands!''! and Pd sources, are
depicted in Table 1. Although the use of Pd(PPhs), or a
combination of Pd(OAc), and PPh; gave a single re-
gioisomer 3, the diastereoselectivities were about 1:1 (en-
tries 3 and 4). These poor diastereoselectivities were dra-
matically improved using a carboxylic acid ligand. When o-
(diphenylphosphanyl)benzoic acid L-1 (Figure 1) was em-
ployed as a ligand (entry 5), the diastereoselectivity ratio

was increased remarkably to 94:6['? with perfect regioselec-
tivity, and 3 was obtained in 86% yield. Diastereoselectivity
and reactivity were decreased by the use of Li and K salts
(entries 6 and 7). On the other hand, the corresponding
para isomer L-2 was poorly diastereoselective (entry 8). An
ortho carboxylic acid moiety was found to be important for
the face selectivity of enolate. (Diphenylphosphanyl)naph-
thoic acids, L-3 and L-4, both had an excellent regioselectiv-
ity of over 99:1 and a diastereoselectivity of 94:6
(Scheme 3). Their chemical yields were fairly good, 86 and
87%, respectively. When 1-(diphenylphosphanyl)-2-naph-
thoic acid L-5 was used, it only produced a 19% yield of 3
as a 1:1 mixture of the diastercomers. Therefore, the phos-
phanyl group located at the B-position on the naphthalene
ring is required for good chemical reactivity and high dia-
stereoselectivity for this reaction.
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Scheme 3. Reaction of 2-ethoxycarbonylcyclicketones with (R)-1

The reaction of 1 with 2-ethoxycarbonylcyclopentanone
(5) proceeded regio- and diastereoselectively to give (S)-7
over (R)-7 with a 92:8 ratio in 75% yield. Similarly, 2-
ethyoxycarbonylcyclohexanone (6) gave (S)-8 predomi-
nantly over (R)-8 with a 93:7 ratio in 77% yield. In these

Table 1. Diastereoselective allylic alkylation of (R)-1 with ethyl 2-methylacetoacetate®l

Entry Pd catalyst® Ligand! Basel! SM: Productst Regioselectivity!! Diastereoselectivity!f]
34 (5)-3:(R)-3

1 Pd(OAc), (R)-ip-Phox NaHMDS 7:93 >99:1 42:58

2 Pd(OAc), (S)-ip-Phox NaHMDS 1:>99 41:591e) 50:50

3 Pd(PPhs), none NaHMDS 3:97 >99:1 55:45

4 Pd(OAc), PPh; NaHMDS 27:73 >99:1 55:45

5 Pd(OAc), L-1 NaHMDS 1:>99 >99:1 94:6

6 Pd(OAc), L-1 LiHMDS 14:86 >99:1 85:15

7 Pd(OAc), L-1 KHMDS 7:93 >99:1 69:31

8 Pd(OAc), L-2 NaHMDS 1:>99 95:5 53:49

9 Pd(OAc), L-3 NaHMDS 1:>99 >99:1 94:6

10 Pd(OAc), L-4 NaHMDS 1:>99 >99:1 94:6

3 Pd(OAc), L-5 NaHMDS 66:34 >99:1 48:52

[2] The reaction was carried out in 1,4-dioxane at room temperature. ® 5 mol % of Pd was used. [ 10 mol % of phosphane was used.
[ In each reaction, 1.4 equiv. of base and 1.5 equiv. of ethyl 2-methylacetoacetate were used. ! The reaction was stopped after 12 h,
even if starting material remained. When the reaction went to completion the yield of products was usually 80—95%. I The ratio was
determined from the proton NMR spectrum of the crude products and the values given are an average of two or three experiments.
(2] The diastereoselectivity of 4 was approximately 1:1.

3910 © 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WWW.eurjoc.org

Eur. J. Org. Chem. 2003, 3909—3912



Short Synthetic Route to (—)-Acetomycin

SHORT COMMUNICATION

Pd-catalyzed diastereoselective o-bond forming reactions, it
is noteworthy that the face selectivity of a B-keto ester enol-
ate was highly controlled by a simple o-(diphenylphos-
phanyl)arylcarboxylic acid.

Acetomycin was isolated from Streptomyces ramulosus sp.
in 1958 by Prelog et al.l'3 It is a rather small molecule (M,
214) but possesses unique and potent anti-tumor activity.!'4l
In addition, its highly oxygenated structure, having three
chiral centers located consecutively on the y-lactone ring,
is particularly attractive for synthetic chemists. Although
several total syntheses, including ours, have been reported
so far,['3] these methods are rather tedious or lack flexibility
for the preparation of its analogues. The consecutive qua-
ternary and tertiary carbon centers of the molecule are
good synthetic targets for demonstrating the above syn-
thetic method. The synthesis is outlined in Scheme 4.
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Scheme 4. Synthesis of (—)-acetomycin; reagents & conditions: a)
cat. Pd(OAc),, 2-(diphenylphosphanyl)naphthoic acid, NaHMDS,
1,4-dioxane; b) cat. CSA, ethylene glycol, benzene, reflux; c)
LiSCleZS, HMPA, d) 03, CH2C12, then Mezs; e) MSCI, Et3N,
CH,Cl,; f) AcOK, dibenzo-18-crown-0-6, toluene, reflux; g)
TsOH, acetone

In the first step, allylation of methyl 2-methylacetoacet-
ate!'®! with (R)-1 using the ligand L-3 gave 9 in 95% yield
with a 93:7 ratio. Protection of the carbonyl group with
ethylene glycol in the presence of CSA followed by hydroly-
sis of methyl ester with odorless thiol lithium salt!”! gave
the carboxylic acid 10 in 83% yield in two steps. After ozon-
olysis of the alkenyl bond, the carboxylic acid was immedi-
ately cyclized to give lactol 11 in 95% yield. Replacement
of the anomeric hydroxy group at the B-position with an
acetoxy group was achieved with inversion of the configura-
tion via its methanesulfonate by the nucleophilic attack of
acetoxy anion activated by dibenzo-18-crown-0-6.1'>*1 The
desired acetate was obtained in 51% yield. Finally, depro-
tection of the acetal under acidic conditions gave (—)-aceto-
mycin in 82% yield. All of the physical and spectroscopic
data, including melting point (mp, 110—111 °C) and
specific rotation {[a]& = —156 (¢ = 0.43, EtOH)}, are in
good accordance with those of the natural product.!'81 This
method has considerably shortened the reaction steps.['”]
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Conclusion

In conclusion, fully carbon-substituted consecutive qua-
ternary and tertiary carbon centers were constructed with
high regio- and stereoselectivity by a Pd catalyzed allylic
alkylation reaction. The utility of this reaction was demon-
strated by producing the shortest asymmetric synthesis of
(—)-acetomycin so far achieved. We are now investigating
the details of this reaction mechanism.

Experimental Section

Representative Experimental Procedure for Pd Catalyzed Allylic Al-
kylation Reaction: (R)-2-Acetoxy-4-phenyl-3-butene (1; 190 mg,
1.0 mmol) and ethyl 2-methylacetoacetate (2; 216 mg, 1.50 mmol)
were added to a stirred solution of 2-(diphenylphosphanyl)benzoic
acid (30.6 mg, 0.10 mmol) and Pd(OAc), (11.2 mg, 0.050 mmol) in
anhydrous 1,4-dioxane (7.4 mL). NaHMDS (1.40 mmol, 1.4 mL of
1.0 M in THF) was slowly added dropwise at 0 °C, and the resultant
mixture allowed to warm up to room temperature over 12 h. The
standard work up and purification of the crude product by silica
gel chromatography gave 3 (237 mg) in 86% yield as a colorless oil
(R)-3: 'TH NMR (400 MHz, CDCls): § = 7.35—7.20 (m, 5 H), 6.43
(d, J = 15.8 Hz, 1 H), 6.05 (dd, J = 15.8, 8.6 Hz, 1 H), 4.22 (q,
J = 17.1Hz, 2 H), 3.23 (m, 1 H), 2.17 (s, 3 H), 1.35 (s, 3 H), 1.28
(t, J = 7.1Hz, 3 H), 1.13 (d, J = 6.7 Hz, 3 H) ppm. '3C NMR
(75 MHz, CDCly): & = 204.9, 172.0, 137.2, 131.4, 130.3, 128.5,
127.4, 126.3, 63.5, 61.3, 41.1, 269, 164, 16.0, 14.1 ppm.
HRMS(EI) caled. for C;H»,O3; [M™*]: m/z = 274.1569; found
274.1567.

(8)-3: 'H NMR (400 MHz, CDCl3): § = 7.43—7.19 (m, 5 H), 6.42
(d, J = 15.8Hz, 1 H), 6.15 (dd, J = 15.8, 8.4 Hz, 1 H), 4.15 (q,
J = 17.1Hz, 2 H), 3.24 (m, 1 H), 2.19 (s, 3 H), 1.36 (s, 3 H), 1.23
(t, J = 7.1Hz, 3 H), 1.07 (d, J = 7.0 Hz, 3 H) ppm. '3C NMR
(75 MHz, CDCl;): & = 205.0, 171.9, 137.3, 131.3, 130.7, 128.5,
127.3, 126.2, 63.7, 61.7, 41.0, 26.8, 15.7, 15.2, 14.1 ppm.
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