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Regio- and diastereoselective nucleophilic substitution of 2-
methylacetoacetate with a chiral non-racemic π-allyl Pd com-
plex creates consecutive chiral non-racemic quaternary and
tertiary carbon centers. σ-Bond formation between the re-
face of the π-allyl Pd complex and the re-face of the enol

Introduction

Creation of a chiral non-racemic quaternary carbon
center is one of the challenging tasks in organic synthesis.[1]

Attempts to prepare a chiral non-racemic quaternary car-
bon center have been made by using chiral ligands in cata-
lytic reactions as well as chiral auxiliaries in stoichiometric
reactions, such as in the alkylation reaction,[2] Diels�Alder
reaction,[3] Heck reaction[4] and a few others.[5] However,
the lack of a general method for the preparation of consecu-
tive chiral non-racemic quaternary and tertiary carbon cen-
ters led us to undertake this study.

Pd-catalyzed asymmetric allylic alkylation is a powerful
and widely used method for the carbon-carbon bond for-
ming reaction that generates, simultaneously, a new stereo-
genic carbon center.[6] For the construction of a chiral non-
racemic quaternary carbon center, investigations have been
performed on this reaction.[7] However, the reaction of α-
substituted unsymmetrical β-diketones or α-substituted β-
keto esters with non-chiral unsymmetric or chiral allylic
acetate generally gives a mixture of regio- and stereoisomers
with poor selectivity. If a chiral non-racemic allyl acetate is
employed,[8] as shown in Scheme 1, the remaining problems
for this reaction would boil down to the control of regio-
and diastereoselectivities, because the allylic alkylation reac-
tion proceeds stereospecifically with net retention of the
stereochemistry. In this communication, we report the first
successful regio- and diastereo-control of Pd-catalyzed al-
lylic alkylation of chiral non-racemic allyl acetate with an
α-substituted β-keto ester, giving an optically pure β-keto
ester, having consecutive quaternary and adjacent tertiary
carbon centers.
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acetoacetate was controlled by the o-(diphenylphosphanyl)-
arylcarboxylic acid ligand selectively. (−)-Acetomycin was
synthesized in seven steps using this key approach.
( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2003)

Scheme 1. Pd catalyzed allylic alkylation of α-substituted β-dike-
tone with chiral non-racemic allyl acetate

Results and Discussion

We chose (R)-2-acetoxy-4-phenyl-3-butene (1)[9] as a chi-
ral non-racemic allyl acetate and ethyl 2-methylacetoacetate
(2) as a counter nucleophile. First, we examined the
Helmchen�Pfaltz oxazolidine ligands.[10] When (R)-ip-
Phox (see Figure 1) was used with a catalytic amount of
Pd(OAc)2 with NaHMDS as a base in 1,4-dioxane, the re-
gioisomer 3 was exclusively yielded over the alternative re-
gioisomer 4 (Scheme 2). The diastereomeric ratio of 3 was
42:58, as determined by proton NMR spectroscopy (entry
1).

Mismatching of the regio- and stereoselectivity of 1 with
(S)-ip-Phox (Figure 1) gave a mixture of 3 and 4 in a 41:59
ratio, each regioisomer being obtained as approximately a
1:1 mixture of R and S diastereomers. The results for other
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Figure 1. Structures of phosphane ligands

Scheme 2. Reaction of ethyl 2-methylacetoacetate with (R)-2-
acetoxy-4-phenyl-3-butene

conditions, including other ligands[11] and Pd sources, are
depicted in Table 1. Although the use of Pd(PPh3)4 or a
combination of Pd(OAc)2 and PPh3 gave a single re-
gioisomer 3, the diastereoselectivities were about 1:1 (en-
tries 3 and 4). These poor diastereoselectivities were dra-
matically improved using a carboxylic acid ligand. When o-
(diphenylphosphanyl)benzoic acid L-1 (Figure 1) was em-
ployed as a ligand (entry 5), the diastereoselectivity ratio

Table 1. Diastereoselective allylic alkylation of (R)-1 with ethyl 2-methylacetoacetate[a]

Entry Pd catalyst[b] Ligand[c] Base[d] SM: Products[e] Regioselectivity[f] Diastereoselectivity[f]

3:4 (S)-3:(R)-3

1 Pd(OAc)2 (R)-ip-Phox NaHMDS 7:93 �99:1 42:58
2 Pd(OAc)2 (S)-ip-Phox NaHMDS 1:�99 41:59[g] 50:50
3 Pd(PPh3)4 none NaHMDS 3:97 �99:1 55:45
4 Pd(OAc)2 PPh3 NaHMDS 27:73 �99:1 55:45
5 Pd(OAc)2 L-1 NaHMDS 1:�99 �99:1 94:6
6 Pd(OAc)2 L-1 LiHMDS 14:86 �99:1 85:15
7 Pd(OAc)2 L-1 KHMDS 7:93 �99:1 69:31
8 Pd(OAc)2 L-2 NaHMDS 1:�99 95:5 53:49
9 Pd(OAc)2 L-3 NaHMDS 1:�99 �99:1 94:6
10 Pd(OAc)2 L-4 NaHMDS 1:�99 �99:1 94:6
11 Pd(OAc)2 L-5 NaHMDS 66:34 �99:1 48:52

[a] The reaction was carried out in 1,4-dioxane at room temperature. [b] 5 mol % of Pd was used. [c] 10 mol % of phosphane was used.
[d] In each reaction, 1.4 equiv. of base and 1.5 equiv. of ethyl 2-methylacetoacetate were used. [e] The reaction was stopped after 12 h,
even if starting material remained. When the reaction went to completion the yield of products was usually 80�95%. [f] The ratio was
determined from the proton NMR spectrum of the crude products and the values given are an average of two or three experiments.
[g] The diastereoselectivity of 4 was approximately 1:1.
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was increased remarkably to 94:6[12] with perfect regioselec-
tivity, and 3 was obtained in 86% yield. Diastereoselectivity
and reactivity were decreased by the use of Li and K salts
(entries 6 and 7). On the other hand, the corresponding
para isomer L-2 was poorly diastereoselective (entry 8). An
ortho carboxylic acid moiety was found to be important for
the face selectivity of enolate. (Diphenylphosphanyl)naph-
thoic acids, L-3 and L-4, both had an excellent regioselectiv-
ity of over 99:1 and a diastereoselectivity of 94:6
(Scheme 3). Their chemical yields were fairly good, 86 and
87%, respectively. When 1-(diphenylphosphanyl)-2-naph-
thoic acid L-5 was used, it only produced a 19% yield of 3
as a 1:1 mixture of the diastereomers. Therefore, the phos-
phanyl group located at the β-position on the naphthalene
ring is required for good chemical reactivity and high dia-
stereoselectivity for this reaction.

Scheme 3. Reaction of 2-ethoxycarbonylcyclicketones with (R)-1

The reaction of 1 with 2-ethoxycarbonylcyclopentanone
(5) proceeded regio- and diastereoselectively to give (S)-7
over (R)-7 with a 92:8 ratio in 75% yield. Similarly, 2-
ethyoxycarbonylcyclohexanone (6) gave (S)-8 predomi-
nantly over (R)-8 with a 93:7 ratio in 77% yield. In these
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Pd-catalyzed diastereoselective σ-bond forming reactions, it
is noteworthy that the face selectivity of a β-keto ester enol-
ate was highly controlled by a simple o-(diphenylphos-
phanyl)arylcarboxylic acid.

Acetomycin was isolated from Streptomyces ramulosus sp.
in 1958 by Prelog et al.[13] It is a rather small molecule (Mr

214) but possesses unique and potent anti-tumor activity.[14]

In addition, its highly oxygenated structure, having three
chiral centers located consecutively on the γ-lactone ring,
is particularly attractive for synthetic chemists. Although
several total syntheses, including ours, have been reported
so far,[15] these methods are rather tedious or lack flexibility
for the preparation of its analogues. The consecutive qua-
ternary and tertiary carbon centers of the molecule are
good synthetic targets for demonstrating the above syn-
thetic method. The synthesis is outlined in Scheme 4.

Scheme 4. Synthesis of (�)-acetomycin; reagents & conditions: a)
cat. Pd(OAc)2, 2-(diphenylphosphanyl)naphthoic acid, NaHMDS,
1,4-dioxane; b) cat. CSA, ethylene glycol, benzene, reflux; c)
LiSC12H25, HMPA; d) O3, CH2Cl2, then Me2S; e) MsCl, Et3N,
CH2Cl2; f) AcOK, dibenzo-18-crown-O-6, toluene, reflux; g)
TsOH, acetone

In the first step, allylation of methyl 2-methylacetoacet-
ate[16] with (R)-1 using the ligand L-3 gave 9 in 95% yield
with a 93:7 ratio. Protection of the carbonyl group with
ethylene glycol in the presence of CSA followed by hydroly-
sis of methyl ester with odorless thiol lithium salt[17] gave
the carboxylic acid 10 in 83% yield in two steps. After ozon-
olysis of the alkenyl bond, the carboxylic acid was immedi-
ately cyclized to give lactol 11 in 95% yield. Replacement
of the anomeric hydroxy group at the β-position with an
acetoxy group was achieved with inversion of the configura-
tion via its methanesulfonate by the nucleophilic attack of
acetoxy anion activated by dibenzo-18-crown-O-6.[15b] The
desired acetate was obtained in 51% yield. Finally, depro-
tection of the acetal under acidic conditions gave (�)-aceto-
mycin in 82% yield. All of the physical and spectroscopic
data, including melting point (mp, 110�111 °C) and
specific rotation {[α]D22 � �156 (c � 0.43, EtOH)}, are in
good accordance with those of the natural product.[18] This
method has considerably shortened the reaction steps.[19]

Eur. J. Org. Chem. 2003, 3909�3912 www.eurjoc.org  2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 3911

Conclusion

In conclusion, fully carbon-substituted consecutive qua-
ternary and tertiary carbon centers were constructed with
high regio- and stereoselectivity by a Pd catalyzed allylic
alkylation reaction. The utility of this reaction was demon-
strated by producing the shortest asymmetric synthesis of
(�)-acetomycin so far achieved. We are now investigating
the details of this reaction mechanism.

Experimental Section

Representative Experimental Procedure for Pd Catalyzed Allylic Al-
kylation Reaction: (R)-2-Acetoxy-4-phenyl-3-butene (1; 190 mg,
1.0 mmol) and ethyl 2-methylacetoacetate (2; 216 mg, 1.50 mmol)
were added to a stirred solution of 2-(diphenylphosphanyl)benzoic
acid (30.6 mg, 0.10 mmol) and Pd(OAc)2 (11.2 mg, 0.050 mmol) in
anhydrous 1,4-dioxane (7.4 mL). NaHMDS (1.40 mmol, 1.4 mL of
1.0  in THF) was slowly added dropwise at 0 °C, and the resultant
mixture allowed to warm up to room temperature over 12 h. The
standard work up and purification of the crude product by silica
gel chromatography gave 3 (237 mg) in 86% yield as a colorless oil
(R)-3: 1H NMR (400 MHz, CDCl3): δ � 7.35�7.20 (m, 5 H), 6.43
(d, J � 15.8 Hz, 1 H), 6.05 (dd, J � 15.8, 8.6 Hz, 1 H), 4.22 (q,
J � 7.1 Hz, 2 H), 3.23 (m, 1 H), 2.17 (s, 3 H), 1.35 (s, 3 H), 1.28
(t, J � 7.1 Hz, 3 H), 1.13 (d, J � 6.7 Hz, 3 H) ppm. 13C NMR
(75 MHz, CDCl3): δ � 204.9, 172.0, 137.2, 131.4, 130.3, 128.5,
127.4, 126.3, 63.5, 61.3, 41.1, 26.9, 16.4, 16.0, 14.1 ppm.
HRMS(EI) calcd. for C17H22O3 [M�]: m/z � 274.1569; found
274.1567.
(S)-3: 1H NMR (400 MHz, CDCl3): δ � 7.43�7.19 (m, 5 H), 6.42
(d, J � 15.8 Hz, 1 H), 6.15 (dd, J � 15.8, 8.4 Hz, 1 H), 4.15 (q,
J � 7.1 Hz, 2 H), 3.24 (m, 1 H), 2.19 (s, 3 H), 1.36 (s, 3 H), 1.23
(t, J � 7.1 Hz, 3 H), 1.07 (d, J � 7.0 Hz, 3 H) ppm. 13C NMR
(75 MHz, CDCl3): δ � 205.0, 171.9, 137.3, 131.3, 130.7, 128.5,
127.3, 126.2, 63.7, 61.7, 41.0, 26.8, 15.7, 15.2, 14.1 ppm.
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