Tetrahedron Letters 54 (2013) 6878-6881

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Stereochemical assignment of topsentolide C₂ by stereodivergent synthesis of its four diastereomers

Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan

tion of topsentolide C₂ as 8R, 11S, and 12S.

ARTICLE INFO

ABSTRACT

Article history: Received 4 September 2013 Revised 1 October 2013 Accepted 7 October 2013 Available online 14 October 2013

Keywords: Topsentolide Oxylipin Cytotoxic Total synthesis Lactonization

Topsentolide C₂ is a cytotoxic oxylipin isolated, together with six other congeners (topsentolides A₁, A₂, B₁, B₂, B₃, and C₁), by Jung and co-workers from the marine sponge Topsentia sp.^{1,2} The structure of topsentolide C_2 was proposed as A (Fig. 1) on the basis of extensive spectroscopic analyses including the modified Mosher method to determine its 12S stereochemistry, coupled with the assumption that it would share the same S configuration at the C8 stereocenter as structurally related natural fatty acid lactones (halicholactone and neohalicholactone),³ although the stereochemistry at the C11 position was left unassigned because of the paucity of the isolated material. The naturally rare nine-membered lactone unit embedded in common in the topsentolides and their significant cytotoxicity against five human solid tumor cell lines $(ED50 = 2.0-17.5 \,\mu g/mL)$ have attracted considerable attention from organic chemists, and five synthetic studies on topsentolides have been reported so far.^{4–7} Among them, the one disclosed by Watanabe and co-workers led to the determination of the stereochemistry of topsentolide A1 to be 8R, 11R, and 12S (structure B in Fig. 1) through comparison of the ¹H NMR spectra and specific rotations of two stereoisomers of B with those of natural topsentolide A1.⁴ This Letter made us suspect that the genuine stereochemistry at the C8 position of topsentolide C₂ might also be R, instead of S as originally proposed by Jung and co-workers on the basis of analogy with halicholactone and neohalicholactone.^{1,3}

Since the absolute configuration at the C12 position of topsentolide C_2 was unambiguously determined to be *S* by the modified

* Corresponding author. Tel./fax: +81 22 717 8783.

E-mail address: skuwahar@biochem.tohoku.ac.jp (S. Kuwahara).

Four diastereomers of topsentolide C_2 , a cytotoxic nine-membered lactone isolated from the marine

sponge Topsentia sp., were synthesized stereodivergently from a common chiral seco acid by the com-

bined use of the Yamaguchi and Mitsunobu lactonizations. Comparison of the NMR spectra of the four

diastereomers with those of an authentic sample of topsentolide C_2 led to the stereochemical determina-

Figure 1. Structure of topsentolide C_2 (A) proposed by Jung et al. and the absolute stereochemistry of topsentolide A₁; (B) determined by Watanabe et al.

Mosher method, its stereochemistry should be represented by one of the four structures, **1**, 8-*epi*-**1**, 11-*epi*-**1**, and 8,11-bis-*epi*-**1** (Fig. 2). The synthesis of the four diastereomers and comparison of their NMR data (or other physicochemical properties) with those of topsentolide C_2 would, therefore, give a decisive answer concerning the stereochemistry of topsentolide C_2 . From a viewpoint of accessibility, however, we chose to synthesize 8,12-bis-*epi*-**1** and 12-*epi*-**1** together with **1** and 8-*epi*-**1**, since 8,12-bis-*epi*-**1** and 12-*epi*-**1** are enantiomeric to 11-*epi*-**1** and 8,11-bis-*epi*-**1**, respectively, and therefore should provide the same NMR information as the latter two isomers. As part of our ongoing efforts toward the total synthesis of oxylipins⁸ as well as to unequivocally elucidate the stereochemistry of topsentolide C_2 , we conducted a stereodivergent synthesis of **1**, 8-*epi*-**1**, 8,12-bis-*epi*-**1**, and 12-*epi*-**1**.

Scheme 1 outlines our synthetic plan for the targeted four diastereomers. We envisaged that 1 and 8-*epi*-1 would be obtainable

© 2013 Elsevier Ltd. All rights reserved.

etrahedro

^{0040-4039/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.10.032

Scheme 1. Retrosynthetic analysis of 1, 8-epi-1, 12-epi-1, and 8,12-bis-epi-1.

by the Yamaguchi and Mitsunobu lactonization, respectively, from common seco acid **2**. Subjection of **1** and 8-*epi*-**1** to the Mitsunobu inversion reaction would then provide 12-*epi*-**1** and 8,12-bis-*epi*-**1**, respectively. The common hydroxy acid intermediate **2** should readily be prepared from aldehyde **3** and phosphonate **4** via the Horner–Wadsworth–Emmons olefination.

The preparation of the aldehyde intermediate **3** began with the conversion of known protected alcohol **5a**⁹ into the corresponding phosphonium ion **5c** via iodide **5b** in 82% yield for the two steps (Scheme 2). The Wittig reaction of **5c** with methyl 5-oxopentanoate afforded *Z*-olefin **6**; the corresponding *E* isomer was not detected by NMR analysis. Deprotection of the acetal group of **6** followed by bis-TBS protection of the resulting diol **7a** gave **7b**, the treatment of which with HF-Py in THF-Py effected selective unmasking of the primary hydroxy group,¹⁰ furnishing **7c**. Finally, exposure of **7c** to the Swern oxidation conditions afforded **3**.

Scheme 2. Preparation of 3. Reagents and conditions: (a) I_2 , Ph_3P , Imid, CH_2CI_2 , 0 °C, 8 h; (b) Ph_3P , MeCN, rt, 14 h, 82% from 5a; (c) NaHMDS, methyl 5-oxopentanoate, THF, -78 °C to rt, 12 h, 70%; (d) TsOH·H₂O, MeOH, reflux, 14 h, 96%; (e) TBSCI, Imid, DMF, 0 °C, 2 h, 98%; (f) HF·Py, THF/Py, 0 °C to rt, 7 h, 75%; (g) (COCI)₂, DMSO, Et₃N, CH₂CI₂, -78 to -30 °C, 3 h, 94%.

The other coupling partner **4** in the Horner–Wadsworth– Emmons reaction was obtained from known iodide $9^{8b,11}$ by a four-step sequence shown in Scheme 3. The Evans asymmetric alkylation of $8^{8b,12}$ with **9** gave **10** as an 15:1 mixture of diastereomers, from which pure **10** was isolated in 62% yield by SiO₂ column chromatography. Hydrolytic removal of the chiral auxiliary in **10** and subsequent Weinreb amide formation from the resulting carboxylic acid **11a** afforded **11b**, which was then treated with dimethyl lithiomethylphosphonate to furnish **4**.

With the two building blocks, 3 and 4, in hand, we proceeded to the final stage of our stereodivergent synthesis of the four diastereomers of topsentolide C₂ (Scheme 4). The E-selective Horner-Wadsworth-Emmons reaction between 3 and 4 under the Roush-Masamune conditions gave **12** in 86% yield;¹³ none of the corresponding Z isomer could be detected by NMR analysis. Reduction of 12 under Luche's conditions proceeded highly diastereoselectively,^{8b} furnishing Felkin-Ahn product **13a** in 85% isolated vield. O-Methylation of the alcohol 13a followed by removal of the TBS group of the resulting methyl ether **13b** gave ester **13c**, which was then saponified with aqueous LiOH to afford seco acid 2. The Yamaguchi lactonization of 2 followed by deprotection of the PMB group took place uneventfully, giving nine-membered lactone 1 in 90% yield for the two steps. Subjection of the alcohol 1 to the Mitsunobu inversion conditions using *p*-nitrobenzoic acid as a nucleophile gave a p-nitrobenzoate intermediate, albeit in a modest yield of 34% probably due to the elimination of H₂O to generate undesired tetraene lactones, as judged by ¹H NMR analysis. Methanolysis of the benzoate intermediate furnished 12-epi-1 in 63% yield along with the starting benzoate recovered in 34% yield. The Mitsunobu lactonization of 2, on the other hand, afforded 8-epi-1 in 56% yield, after removal of the PMB group. Finally,

Scheme 3. Preparation of **4.** Reagents and conditions: (a) NaHMDS, THF, $-78 \degree C$, 19 h, 62%; (b) LiOOH, THF/H₂O, 0 $\degree C$ to rt, 3 h; (c) NHMe(OMe)·HCl, DCC, DMAP, CH₂Cl₂, 0 $\degree C$ to rt, 4 h, 80% from **10**; (d) MePO(OMe)₂, *n*-BuLi, THF, $-78 \degree C$, 6 h, 87%.

Scheme 4. Synthesis of four diastereomers of topsentolide C₂: Reagents and conditions: (a) Et₃N, LiBr, THF, rt, 23 h, 86%; (b) NaBH₄, CeCl₃·7H₂O, MeOH, -78 °C, 1 h, 85%; (c) NaHMDS, MeI, THF, -78 °C to rt, 24 h, 83%; (d) TBAF, THF, 0 °C, 6 h, 98%; (e) LiOH·H₂O, THF/H₂O, rt to 40 °C, 12 h, quant; (f) Cl₃C₆H₂COCl, i-Pr₂NEt, THF, 0 °C to rt, then DMAP, toluene, 90 °C, 15 h, 90%; (g) DDQ, THF/H₂O, 0 °C to rt, 2 h, quant; (h) DEAD, Ph₃P, p-(NO₂)C₆H₄CO₂H, toluene, 0 °C to rt, 4 h, 34%; (i) K₂CO₃, MeOH, 0 °C, 7 h, 63% (95% brsm); (j) DEAD, Ph₃P, p-(NO₂)C₆H₄CO₂H, toluene, 0 °C to rt, 24 h, 56%; (k) DDQ, THF/H₂O, 0 °C to rt, 2 h, quant; (l) DEAD, Ph₃P, p-(NO₂)C₆H₄CO₂H, toluene, 0 °C to rt, 2 h, 56%; (k) DDQ, THF/H₂O, 0 °C to rt, 2 h, quant; (l) DEAD, Ph₃P, p-(NO₂)C₆H₄CO₂H, toluene, 0 °C to rt, 2 h, 56%; (m) K₂CO₃, MeOH, 0 °C, 8 h, 61% (96% brsm).

application of the two-step protocol, employed for the conversion of **1** into 12-*epi*-**1**, to 8-*epi*-**1** provided 8,12-bis-*epi*-**1**.¹⁴

With the four diastereomers in hand, we compared their spectral data with those of an authentic sample of topsentolide C_2 to elucidate its stereochemistry. Although the ¹³C NMR spectral data of the four diastereomers were very similar to one another, slight differences were observed, especially in the chemical shift difference between the C-8 and C-12 carbons: $\delta_{C-12}-\delta_{C-8}=0.8$ and 1.0 ppm for 1 and 8-epi-1 (11,12-syn isomers), respectively, 0.5 ppm for both 12-epi-1 and 8,12-bis-epi-1 (11,12-anti isomers), and 0.9 ppm for topsentolide C_2 (see Supplementary data). Moreover, the ¹H NMR spectra of 12-epi-**1** and 8,12-bis-epi-**1** (11,12-anti isomers) were clearly different from that of topsentolide C_2 ; the signals for the 11-H and 12-H of the 11,12-anti isomers were observed as two separate sets of peaks [δ 3.54 (1H, dd, J = 7.6, 4.3 Hz) and 3.63 (1H, dt, J = 7.6, 4.8 Hz) for 12-epi-1, and δ 3.54 (1H, dd, J = 7.6, 4.5 Hz) and 3.62 (1H, dt, J = 7.6, 4.8 Hz) for 8, 12-bis-epi-1, while those of the 11,12-syn isomers as well as topsentolide C₂ appeared as overlapping peaks at δ 3.47–3.55 (2H, m). From these results, coupled with the 12S configuration assigned by the modified Mosher method, we could conclusively determine the stereochemistry at the side chain moiety of topsentolide C₂ as 11S and 12S. The difference between the two 11,12-syn isomers in ¹H NMR was, on the other hand, quite subtle, but close inspection of the spectra of 1, 8-epi-1, and authentic topsentolide C₂ indicated some noticeable differences in the shape of peaks in the region of δ 2.3–2.5 ppm, and the peak appearance in that region of topsentolide C₂ was more similar to that of 8-*epi*-**1** rather than **1** (see Supplementary data). As a whole, we led to the conclusion that the absolute stereochemistry of topsentolide C₂ should be represented by structure 8-*epi*-**1**.^{15,16}

In conclusion, four diastereomers of topsentolide C_2 (1, 8-*epi*-1, 12-*epi*-1, and 8,12-bis-*epi*-1) were synthesized stereodivergently from the common chiral seco acid **2** by the combined use of the Yamaguchi and Mitsunobu lactonizations. Comparison of the NMR spectra of the four diastereomers with those of topsentolide C_2 indicated that the absolute stereochemistry of topsentolide C_2 should be represented by structure 8-*epi*-1 [(8*R*,11*S*,12*S*)-isomer].

Acknowledgements

We are grateful to Professor Jung (Pusan National University) for providing a copy of the ¹H NMR spectrum of topsentolide C₂. We also thank Assistant Professor Hitosugi (Tohoku University) for his help in the measurement of NMR spectra. This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 24658105).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013. 10.032. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- Luo, X.; Li, F.; Hong, J.; Lee, C.-O.; Sim, C. J.; Im, K. S.; Jung, J. H. J. Nat. Prod. 2006, 69, 567–571.
- For recent reviews on oxylipins, see: (a) Andreou, A.; Brodhun, F.; Feussner, I. Prog. Lipid Res. 2009, 48, 148–170; (b) Böttcher, C.; Pollmann, S. FEBS J. 2009, 276, 4693–4704; (c) Brodhun, F.; Feussner, I. FEBS J. 2011, 278, 1047–1063.
- (a) Niwa, H.; Wakamatsu, K.; Yamada, K. Tetrahedron Lett. **1989**, 30, 4543–4546;
 (b) Kigoshi, H.; Niwa, H.; Yamada, K.; Stout, T. J.; Clardy, J. Tetrahedron Lett. **1991**, 32, 2427–2428;
 (c) Critcher, D. J.; Connolly, S.; Wills, M. J. Org. Chem. **1997**, 62, 6638–6657.
- Kobayashi, M.; Ishigami, K.; Watanabe, H. Tetrahedron Lett. 2010, 51, 2762– 2764.
- Sreedhar, E.; Venkanna, A.; Chandramouli, N.; Babu, K. S.; Rao, J. M. Eur. J. Org. Chem. 2011, 1078–1083.
- (a) Fernandes, R. A.; Kattanguru, P. Tetrahedron Lett. 2011, 52, 1788–1790; (b) Fernandes, R. A.; Kattanguru, P. Tetrahedron: Asymmetry 2011, 22, 1930–1935.
- Wetzel, I.; Krauss, J.; Bracher, F. Lett. Org. Chem. 2012, 9, 169–174.
 (a) Miura, A.; Kuwahara, S. Tetrahedron 2009, 65, 3364–3368; (b) Kurashina, Y.;
- (a) Milita, A., Ruwahara, S. Fertunearon 2009, 05, 5504–5508, (b) Rufashina, F., Miura, A.; Enomoto, M.; Kuwahara, S. *Tetrahedron* 2011, 67, 1649–1653; (c) Kurashina, Y.; Kuwahara, S. *Biosci. Biotechnol. Biochem.* 2012, 76, 605–607.
- (a) Honjo, E.; Kutsumura, N.; Ishikawa, Y.; Nishiyama, S. *Tetrahedron* 2008, 64, 9495–9506; (b) Jackson, S. K.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196–4201.
- 10. Ruiz, P.; Murga, J.; Carda, M.; Marco, J. A. J. Org. Chem. 2005, 70, 713–716.
- Singh, J.; Kaur, J.; Nayyar, S.; Bhandari, M.; Kad, G. L. J. Indian Chem., Sect B: Org. Chem. Incl. Med. Chem. 2001, 40B, 386–390.
- 12. Askin, D.; Reamer, R. A.; Joe, D.; Volante, R. P.; Shinkai, I. *Tetrahedron Lett.* 1989, 30, 6121–6124.
- 14. *Physical and spectral data* 1: $[\varkappa]_D^{28} 95.8$ (c 0.570, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 0.90 (3H, t, *J* = 6.9 Hz), 1.25–1.40 (6H, m), 1.70–1.82 (1H, m), 2.00–2.24 (7H, m), 2.30–2.58 (4H, m), 3.29 (3H, s), 3.47–3.55 (2H, m), 5.25–5.31 (1H, m), 5.42–5.53 (4H, m), 5.69 (1H, ddd, *J* = 15.6, 7.7, 1.2 Hz), 5.87 (1H, dd, *J* = 15.6, 5.7 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 14.4, 23.6, 26.3, 27.6, 28.4, 30.4, 31.8, 32.7, 34.4, 35.6, 57.0, 74.0, 74.8, 85.7, 125.6, 126.6, 130.3, 132.7, 134.0, 136.2, 175.6; HRMS (FAB) *m/z* calcd for C₂₁H₃₄O₄Na ([M+Na]⁺) 373.2355, found 373.2351. 12–*epi*-11: $[\varkappa]_0^{28} 55 (c 0.47, MeOH); ¹H NMR (400 MHz, CD₃OD) <math>\delta$ 0.90 (3H, t, *J* = 6.9 Hz), 1.25–1.40 (6H, m), 1.70–1.82 (1H, m), 2.01–2.24 (7H, m), 2.25–2.41 (2H, m), 2.42–2.58 (2H, m), 3.28 (3H, s), 3.54 (1H, dd, *J* = 7.6, 4.3 Hz), 3.63 (1H, dt, *J* = 7.6, 4.8 Hz), 5.26–5.32 (1H, m), 5.40–5.53 (4H, m), 5.74 (1H, dd, *J* = 15.7, 7.6 Hz), 5.85 (1H, dd, *J* = 15.7, 5.4 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 14.4, 23.6, 26.3, 27.6, 28.5, 30.5, 31.8, 32.7, 34.4, 35.6, 56.9, 74.0, 74.5, 85.8, 125.6, 126.6, 129.7, 132.8, 134.4, 136.2, 175.7; HRMS (FAB) *m/z* calcd for C₂₁H₃₄O₄Na ([M+Na]⁺) 373.2355, found 373.2355, m/z, 11, 25–1.40 (6H, m), 1.70–1.82 (1H, m), 2.01–2.24 (7H, m), 2.01–2.24 (7H, m), 2.25–2.41 (2H, m), 2.42–2.58 (2H, m), 3.28 (3H, s), 3.54 (1H, dd, *J* = 7.6, 4.3 Hz), 5.26 (5.126.6, 129.7, 132.8, 134.4, 136.2, 175.7; HRMS (FAB) *m/z* calcd for C₂₁H₃₄O₄Na ([M+Na]⁺) 373.2355, found 373.2359. *B*-*epi*-1: $[\alpha]_1^{28}$ +86.8 (*c* 1.33, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 0.90 (3H, *t, J* = 6.9 Hz), 1.25–1.40 (6H, m), 1.70–1.82 (1H, m), 2.00–2.24 (7H, m), 2.30–2.58 (4H, m), 3.29 (3H, s), 3.47

3.55 (2H, m), 5.24–5.30 (1H, m), 5.42–5.53 (4H, m), 5.70 (1H, ddd, *J* = 15.8, 7.4, 1.0 Hz), 5.87 (1H, dd, *J* = 15.8, 5.5 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 14.4, 23.6, 26.3, 27.6, 28.4, 30.4, 31.8, 32.7, 34.4, 35.5, 57.0, 73.9, 74.9, 85.7, 125.6, 126.6, 130.1, 132.7, 134.0, 136.2, 175.7; HRMS (FAB) *m/z* calcd for C₂₁H₃₄QANa ([M+Na]⁺) 373.2355, found 373.2354. 8,12-bis-epi-1: $[\alpha]_{2}^{28}$ +66.2 (*c* 0.520, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 0.90 (3H, t, *J* = 6.8 Hz), 1.25–1.40 (6H, m), 1.70–1.82 (1H, m), 2.01–2.24 (7H, m), 2.25–2.41 (2H, m), 2.42–2.58 (2H, m), 3.29 (3H, s), 3.54 (1H, dd, *J* = 7.6, 4.5 Hz), 362 (1H, dt, *J* = 7.6, 4.8 Hz), 5.25–5.31 (1H, m), 5.40–5.53 (4H, m), 5.73 (1H, dd, *J* = 15.8, 7.7 Hz), 5.85 (1H, dd, *J* = 15.8, 7.3 4.4, 35.6, 56.9, 74.0, 74.5, 85.9, 125.6, 126.6, 129.7, 132.8, 134.4, 136.2, 175.7; HRMS (FAB) *m/z* calcd for C₂₁H₃₄O₄Na ([M+Na]⁺) 373.2355, found 373.2353.

- 15. Topsentolide C_2 was suspected by Jung et al. to be an artifact derived from topsentolide A_2 (17,18-dhihydro-**B**, see Fig. 1) during its extraction with MeOH (see Ref. 1), and the absolute stereochemistry of topsentolide A_1 (**B**) was determined as dipicted in Figure 1 through synthetic studies by Watanabe et al. (see Ref. 4). Therefore, it would be natural to consider that topsentolide C_2 was formed by epoxide ring opening of topsentolide A_2 by MeOH at the allylic C11 position with inversion of configuration.
- 16. Unfortunately, the specific rotation values of 8-epi-1 $[\alpha]_D^{29}$ +86.8 (*c* 1.33, MeOH) and 1 $\{[\alpha]_D^{29} 95.8$ (*c* 0.570, MeOH) were both far different from that reported for topsentolide C₂ $\{[\alpha]_D^{23} + 14.5 (c 0.27, MeOH)\}$. Remeasurement of the specific rotation of authentic topsentolide C₂ is needed to solve the discrepancy.