

Polyhedron 21 (2002) 2409-2419

www.elsevier.com/locate/poly

Synthesis and structure of platinum and palladium complexes of dimesitylphosphine

Elizabeth M. Pelczar^a, Emily A. Nytko^a, Michael A. Zhuravel^a, Jeremy M. Smith^{a,1}, David S. Glueck^{a,*}, Roger Sommer^b, Christopher D. Incarvito^b, Arnold L. Rheingold^b

^a 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA ^b Department of Chemistry, University of Delaware, Newark, DE 19716, USA

Received 1 May 2002; accepted 31 July 2002

Abstract

Treatment of Pd(tmeda)Me₂ with dimesitylphosphine (PMes₂H, L) gave *cis*-PdL₂Me₂ (1). *trans*-ML₂Cl₂ (M = Pd (2), Pt (3)) were prepared from a variety of starting materials. The reaction of Pt(cod)Cl₂ with L gave *cis*-PtL₂Cl₂ (4), which reacted with PPh₃ to yield *cis*-Pt(L)(PPh₃)Cl₂ (5). *cis*-PtL₂(Me)(Cl) (6) was prepared from L and Pt(cod)(Me)(Cl), while reaction of L with Pt(cod)(Et)(I) gave *cis*-PtL₂(Et)(I) (7), which isomerized to *trans*-PtL₂(Et)(I) (8). The phosphine–borane PMes₂H·BH₃ (9) was made by reaction of L with BH₃·SMe₂. Crystal structures of $2 \cdot 2CH_2Cl_2$, $4 \cdot CH_2Cl_2$, $5 \cdot 2CH_2Cl_2$, 6, and 9 provided 7information on the steric bulk of L (cone angle ca. 149°). Restricted rotation about the Pt–P and P–C bonds in complexes 4-8 was studied by variable temperature NMR spectroscopy.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Dimesitylphosphine; Secondary phosphine; X-ray crystallography; NMR; Cone angle; Fluxional

1. Introduction

Since reaction of secondary phosphines with metal complexes often results in cleavage of the P–H bond and formation of a phosphido (PR₂) complex, it is difficult to study their ligand properties for comparison with the well-known tertiary phosphines [1]. Secondary phosphines with bulky substituents are less prone to reactions of the P–H bond, which has enabled extensive study of the coordination chemistry of, for example, P(*t*-Bu)₂H [2]. Despite the steric bulk of dimesitylphosphine (PMes₂H=L, Mes = 2,4,6-Me₃C₆H₂), we have previously reported oxidative addition of its P–H and P–C bonds to Pt(0) [3], as well as cyclometalation of a Mes *o*-Me group in Pt(II) and Pd(II) complexes [4]. Here we describe the synthesis of a series of less reactive Pt(II) and Pd(II) complexes of dimesitylphosphine. NMR and

X-ray structural studies provide information on the steric and electronic properties of this ligand, as well as the dynamics of its complexes in solution [5].

2. Results and discussion

Treatment of PdMe₂(tmeda) [6] with 2 equiv. of L gave *cis*-Pd(PMe₂H)₂Me₂ (1, Scheme 1). The *cis* geometry was established by NMR; thus, the ³¹P NMR spectrum (C₆D₆) shows only a doublet ($J_{PH} =$ 339 Hz) at δ -46.6, consistent with small ² J_{PP} and ³ J_{PH} couplings in the AA'XX' spin system [7]. The Pd-Me ¹³C NMR signal (C₆D₆) appears at δ 5.1 (dd, J = 95, 10 Hz), as expected for the *cis* isomer. Tables 1 and 2 contain additional selected NMR and IR (v_{PH}) data characterizing the PMes₂H ligands in this and related complexes (see below).

Initially prepared samples of **1** were off-white, but they rapidly turned purple in solution or the solid state. Although we were unable to remove the unidentified purple material, these samples were analytically and spectroscopically pure, suggesting that only traces of a

^{*} Corresponding author

E-mail address: glueck@dartmouth.edu (D.S. Glueck).

¹ Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.

highly colored impurity were present. Complex 1 was thermally stable, decomposing slowly in toluene at $105 \,^{\circ}$ C over several days to give unidentified products [8].

Addition of 2 equiv. of $PMes_2H$ to $PdCl_2$ in acidic ethanol gave *trans*-PdL₂Cl₂ (2) [9]. This complex could also be prepared by addition of 2 equiv. of $PMes_2H$ to

Table 1 Selected NMR and IR data for *cis*-dimesitylphosphine complexes ^a

either Pd(cod)Cl₂ (cod = 1,5-cyclooctadiene) or Pd(NCPh)₂Cl₂ (Scheme 1). The *trans* stereochemistry of **2** and its Pt analogue **3** (see below) was established by NMR. Analysis of the PMes₂H AA'XX' patterns in the ¹H and ³¹P NMR spectra [7] and simulation using gNMR [10] gave the coupling constants shown in Table 2. The large J_{PP} values (598 and 523 Hz, respectively) are consistent with the *trans* geometry [11].

Interestingly, treatment of **2** with 2 equiv. of MeLi gave partial conversion to the dimethyl complex **1** (Scheme 1). The steric bulk of PMes₂H would seem to contraindicate the observed *trans*-*cis* isomerization, but similar results have been observed previously. For example, *trans*-Pd(PPh₃)₂Me₂ isomerizes on heating in DMSO to the *cis* complex [8a]. Electronic arguments based on the strong *trans* influence of the methyl group

Complex	$\delta(\mathbf{P})$	$^{1}J_{\rm PH}$	$^{1}J_{\mathrm{Pt}_{-}\mathrm{P}}$	δ (PH)	v(PH)
	16.6	220		5.07	2200
$PdL_2Me_2(1)$	-46.6	339	~	5.97	2388
PtL_2Cl_2 (4) $^{\circ}$	-48.1	414	3444	6.34	2422
PtL_2Cl_2 (4A) ^c	-44.2	408	3631	5.55 °	
PtL_2Cl_2 (4B) ^c	-51.1	430	3302	6.77 °	
PtL_2Cl_2 (4C) ^c	-41.6	414	ť	5.16 ^g	
$PtL(PPh_3)Cl_2$ (5) ^h	-39.6^{-1}	408	3538	4.89 ^j	2413
$PtL_2(Me)(Cl)$ (6)	-38.1	372	1505	f	2400
	-49.2	403	4189		
PtL ₂ (Me)(Cl) (6A) ^k	-31.8	m	1777	m	
	-47.3		3996		
$PtL_2(Me)(Cl) (6B)^k$	-33.7	m	1726	m	
	-48.1		4016		
PtL ₂ (Me)(Cl) (6C) ^k	-34.9	m	1341	m	
	-43.2		4207		
$PtL_2(Me)(Cl)$ (6D) ^k	-36.4	m	1444	m	
	-44.1		4234		
$PtL_2(Et)(I)$ (7)	-43.5	388	4315	f	2402
	-46.9	368	1350		
$PtL_2(Et)(I)$ (7A) ¹	-41.7	386	4355	m	
	-46.3	382	1325		
$PtL_2(Et)(I) (7B)^{-1}$	-40.1	401	4309	m	
	-44.0	375	1248		
$PtL_2(Et)(I) (7C)^{-1}$	-37.1	389	4166	m	
	-41.2	361	1627		
$PtL_2(Et)(I) (7D)^{-1}$	-35.8	409	4132		
	- 39.4	362	1563	m	

^a Temperature: 21 °C unless noted; solvents: C_6D_6 for 1, 6, CDCl₃ for 5, 7. ³¹P NMR chemical shift reference: external 85% H₃PO₄; coupling constants in Hz; IR data in cm⁻¹ for KBr pellets.

^c CD₂Cl₂, -70 °C. Two major species (A, B) and a minor one (C) in ca. 1:1:0.15 ratio were observed.

- ^d Apparent dd, J = 408, 10.
- ^e Apparent d, J = 430.

- ^g Apparent dd, J = 414, 10. In addition, another apparent d (J = 428) at δ 6.89 was observed.
- ^h Additional ³¹P NMR data: δ 14.5 (d, J = 14, $J_{Pt-P} = 3589$, PPh₃).

ⁱ d, J = 14.

- ^j dd, J = 408, 12.
- ^k CD₂Cl₂, -70 °C. Four isomers A–D (ratio 2.9:2.6:1.7:1) were observed; for isomers B–D, $J_{PP} = 8$.
- ¹ CD₂Cl₂, -40 °C. Four isomers A–D (ratio 7.3:4.4:5.6:1) were observed.

^b C₆D₅Cl, 100 °C.

^f Not observed.

^m See the text and Section 4 for further discussion and low-temperature ¹H NMR results.

Table 2							
Selected	NMR	and	IR	data	for	trans-dimesitylphosphine complexes	a

Complex	$\delta(\mathbf{P})$	$^{1}J_{\mathrm{Pt-P}}$	$^{2}J_{\mathrm{PP}}$	$^{1}J_{ m PH}$	$^{3}J_{\mathrm{PH}}$	δ (PH)	v(PH)
PdL_2Cl_2 (2)	-38.3		598	386	-2	6.52	2400
PtL_2Cl_2 (3)	-37.9	2506	523	396	-2	6.66	2404
$PtL_2(Et)(I) (8)^{b,c}$	-37.1	3123	492	389	-3	7.24 ^d	2395

^a Temperature: 21 °C unless noted; solvents: CDCl₃ for **2**, **3**, C₆D₅Cl for **8**; ³¹P NMR chemical shift reference: external 85% H₃PO₄; coupling constants in Hz; IR data in cm⁻¹ for KBr pellets.

^b 80 °C.

^c Additional ³¹P{¹H} NMR data for 8 (CD₂Cl₂, -70 °C): Four isomers (A–D) with approximate ratio 4.8:2.7:1:1 were observed; δ –39.4 ($J_{Pt-P} = 3069$, A), -29.0 ($J_{Pt-P} = 3153$, B), -37.3 ($J_{Pt-P} = 3006$, C), -26.7 ($J_{Pt-P} = 3153$, D). See the text and Section 4 for additional discussion of these and related low-temperature ¹H NMR spectra.

^d Apparent d, J = 384, $J_{Pt-H} = 26$, perhaps the most intense two peaks of an AA'XX' pattern.

have been advanced to explain this behavior ("antisymbiotic effect" [12], "transphobia" [13]).

Reaction of 2 equiv. of L with three different platinum sources $[K_2PtCl_4, PtCl_2, and PtCl_2(NCPh)_2]$ yielded *trans*-Pt(PMes_2H)_2Cl_2 (3) as a yellow powder (Scheme 1, Table 2). In contrast, treatment of Pt(cod)Cl₂ with L gave *cis*-Pt(PMes_2H)_2Cl_2 (4) as shown in Scheme 2. Its room temperature NMR spectra contain very broad peaks, attributed to restricted rotation about the P–C and/or Pt–P bonds (see below). At high temperature (100 °C, C₆D₅Cl) a sharp average spectrum consistent with the *cis* geometry is observed (Table 1).

The reactivity of 4 was briefly examined (Scheme 2). Irradiation of a CD_2Cl_2 solution of 4 with a mercury lamp caused slow conversion to the trans isomer 3, consistent with literature reports of related photochemical cis-trans isomerizations in PtL₂X₂ complexes $(L = PPh_3, pyridine, isoquinoline, X = Cl, Br)$ [9,14]. Treatment of Pt(cod)Cl₂ with 3 equiv. of PMes₂H gave a mixture of 4 and PMes₂H, which did not undergo exchange on the NMR time scale, while 1 equiv. of $PMes_2H$ gave a mixture of 4 and unreacted $Pt(cod)Cl_2$, as shown by the ¹H NMR spectrum. Addition of more phosphine completed the conversion to 4. PMes₂H was readily displaced from 4 by 2 equiv. of dppe (dppe = Ph₂PCH₂CH₂PPh₂) to yield [Pt(dppe)₂][Cl]₂ [15]. Heating 4 at 45 °C in CH₂Cl₂ with 2 equiv. of PPh₃ gave cis- $Pt(PMes_2H)(PPh_3)Cl_2$ (5). Consistent with the stoichio-

metry, ³¹P NMR monitoring of the reaction mixture showed formation of PMes₂H and the presence of unreacted PPh₃. Recrystallization from CH₂Cl₂/petroleum ether gave white crystals, identified by NMR as the *cis* isomer ($J_{PP} = 14$ Hz, Table 1).

Reaction of Pt(cod)(Me)(Cl) with 2 equiv. of L yielded *cis*-Pt(PMes₂H)₂(Me)(Cl) (**6**, Scheme 3). The *cis* geometry was established by ³¹P NMR (see Table 1) and by the Pt–Me ¹³C NMR signal (δ 3.5, dd, J = 96, 6 Hz, CD₂Cl₂). Similarly, treatment of Pt(cod)(Et)(I) with 2 equiv. of L gave white *cis*-Pt(PMes₂H)₂(Et)(I) (7, Table 1), which readily isomerized on standing or gentle heating to the yellow *trans* isomer (**8**, Scheme 3). The room temperature NMR spectra of complex **8** were very broad, indicative of a dynamic process (see Section 2.2), but at 80 °C in C₆D₅Cl, it showed the expected AA'XX' ³¹P NMR spectrum (Table 2).

2.1. Solid-state structures

The X-ray crystal structures of *trans*-PdL₂Cl₂ ($2 \cdot 2$ CH₂Cl₂), *cis*-PtL₂Cl₂ ($4 \cdot$ CH₂Cl₂), *cis*-PtL(PPh₃)Cl₂ ($5 \cdot 2$ CH₂Cl₂), *cis*-PtL₂(Me)(Cl) (**6**) and the phosphine– borane L-BH₃ (**9**, see Section 4) were determined to investigate the effect of the bulky phosphine on the structures of its simple coordination complexes. For thermal ellipsoid plots, see Figs. 1–5; crystal data is summarized in Table 3, and additional details are included in Sections 4 and 5. See the figure captions and Tables 4 and 5 for selected bond lengths and angles.

The structure of 2 shows a minor distortion from ideal square planar geometry, and Pd-P and Pd-Cl bond

Scheme 3.

Fig. 1. ORTEP diagram of *trans*-Pd(PMes₂H)₂Cl₂ ($2 \cdot 2$ CH₂Cl₂), with thermal ellipsoids at 30% probability. The solvent molecules and hydrogen atoms, except those on P, have been removed for clarity. Selected bond lengths (Å) and angles (°): Pd-Cl(1) 2.3028(7), Pd-Cl(1A) 2.3028(7), Pd-P(1) 2.3057(7), Pd-P(1A) 2.3057(7), P(1)-C(10) 1.819(3), P(1)-C(1) 1.822(3), Cl(1)-Pd-Cl(1A) 180.0, Cl(1)-Pd-P(1) 93.91(2), Cl(1A)-Pd-P(1) 86.09(2), Cl(1)-Pd-P(1A) 86.09(2), Cl(1)-Pd-P(1) 93.91(2), P(1)-C(1) 110.45(12).

Fig. 2. ORTEP diagram of cis-Pt(PMes₂H)₂Cl₂ (4·CH₂Cl₂), with thermal ellipsoids at 30% probability. The solvent molecule and hydrogen atoms, except those on P, have been removed for clarity.

lengths typical of those in square planar phosphine complexes [16]. The *cis*-Pt complexes 4-6 (see Table 4) all show slight distortions from square planar geometry. As might be expected, the P–Pt–P bond angles, which range from $95.65(7)^{\circ}$ to $97.07(7)^{\circ}$ are larger than the ideal value, presumably due to steric hindrance between the bulky phosphines, as previously observed in cis- $Pt(PPh_3)_2Cl_2$ (Table 4) and related structures [17]. The close similarity between the structures of 4, 5 and *cis*-Pt(PPh₃)₂Cl₂ suggests that L and PPh₃ have comparable steric and electronic properties. This is consistent with the similar J_{Pt-P} values found for these phosphines in 5 (3538 Hz for L, 3589 Hz for PPh₃, CDCl₃). As expected from *trans* influence trends, the Pt-P bond *trans* to the methyl group in 6 is longer [2.3311(17) Å] than the one trans to chloride [2.214(2) Å] [18].

Fig. 3. Thermal ellipsoid plot (25% probability) of *cis*-Pt(PMes₂H)(PPh₃)Cl₂ (5·2CH₂Cl₂). The solvent molecule and hydrogen atoms, except the one on P, have been removed for clarity.

Fig. 4. ORTEP diagram of cis-Pt(PMes₂H)₂(Me)(Cl) (6), with thermal ellipsoids at 30% probability. The hydrogen atoms, except those on P, have been removed for clarity.

Fig. 5. Thermal ellipsoid plot (25% probability) of $PMes_2H \cdot BH_3$ (9). Hydrogen atoms, except those on P and B, have been removed for clarity. Selected bond lengths (Å) and angles (°): P–H(1) 1.35(3), P– C(1) 1.824(3), P–C(10) 1.829(3), P–B(1) 1.938(4), H(1)–P–C(10) 97.3(11), H(1)–P–C(1) 104.0(11), H(1)–P–B(1) 108.3(12), C(10)–P– C(1) 110.71(12), C(10)–P–B(1) 124.41(15), C(1)–P–B(1) 109.62(15).

In the structure of phosphine–borane 9, the PH and BH_3 hydrogens were found and refined freely. The geometry around phosphorus is tetrahedral as expected, though the C(10)–P–B bond angle is somewhat larger

Complex	$2 \cdot 2CH_2Cl_2$	$4 \cdot CH_2 Cl_2$	$5 \cdot 2CH_2Cl_2$	6	9
Empirical formula	C ₃₈ H ₅₀ Cl ₆ P ₂ Pd	$C_{37}H_{48}Cl_4P_2Pt$	$C_{38}H_{42}Cl_6P_2Pt$	C ₃₇ H ₄₉ ClP ₂ Pt	C ₁₈ H ₂₆ BP
Formula weight	887.82	891.58	968.45	786.24	284.17
Space group	$P2_1/n$	$P 2_1/n$	$P 2_1/n$	$P 2_1/n$	$P 2_1/c$
Temperature (K)	173(2)	173(2)	173(2)	173(2)	173(2)
a (Å)	11.3321(6)	12.4534(10)	11.6372(13)	14.2510(9)	8.1454(14)
b (Å)	11.8745(7)	19.3221(15)	22.830(3)	15.1847(11)	11.3460(19)
c (Å)	15.9474(8)	16.1326(12)	15.2546(18)	16.2727(11)	19.258(3)
α (°)	90	90	90	90	90
β (°)	107.6950(10)	106.418(2)	98.820(3)	97.257(2)	98.973(4)
γ (°)	90	90	90	90	90
V (Å ³)	2044.40(19)	3723.6(5)	4004.9(8)	3493.2(4)	1758.0(5)
Z	2	4	4	4	4
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.442	1.590	1.606	1.495	1.074
$\mu (mm^{-1})$	0.951	4.167	4.010	4.209	0.146
R(F) (%) ^a	3.59	2.98	4.02	4.79	5.53
$R(wF^2)$ (%) ^a	8.44	6.52	8.91	7.87	13.50

Crystallographic data for trans-PdL₂Cl₂ (2·2CH₂Cl₂), cis-PtL₂Cl₂ (4·CH₂Cl₂), cis-PtL(PPh₃)Cl₂ (5·2CH₂Cl₂), cis-PtL₂(Me)(Cl) (6), and L·BH₃ (9)

^a Quantity minimized = $R(wF^2) = [\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]]^{1/2}; R = \Sigma \Delta / \Sigma(F_o), \Delta = I|(F_o - F_c)|I.$

than the ideal angle at $124.41(15)^{\circ}$. The P–B bond length (1.938(4) Å) is typical of those in phosphine– boranes, for which a recently reported range is 1.832-1.983 Å [19]. Comparison to the structure of PMes₂H [20] (Table 5) shows that borane complexation has little effect on the structure of the phosphine. The P–C bonds become slightly shorter and the C(1)–P–C(10) bond angle is increased.

The program STERIC [21] was used to determine the cone angle of L from the crystal structure data, setting a

P–B distance of 2.28 Å in the case of 9 [22]. Although this is longer than the experimental distance, this choice allows comparison to the results for the metal complexes. As shown in Table 6, the cone angle falls in a narrow range in this series of complexes, although significant differences can be seen even within a single compound containing two phosphines, such as 4. The average cone angle is approximately 149°. Consistent with the discussion above, the crystallographically determined cone angles for L and PPh₃ in 5 are similar;

Table 4 Selected bond lengths (Å) and angles (°) for *cis*-Pt dimesitylphosphine complexes $4-6^{a}$

Complex	$PtL_2Cl_2 \ (\textbf{4} \cdot CH_2Cl_2)$	$PtL(PPh_3)Cl_2 (5 \cdot 2CH_2Cl_2)$	PtL ₂ (Me)(Cl) (6)	$Pt(PPh_3)_2Cl_2\cdot C_3H_6O^{\ b}$
Bond lengths				
Pt-P ₁	2.2481(9)	2.2438(19)	2.3311(17)	2.251(2)
$Pt-P_2$	2.2315(9)	2.2444(19)	2.214(2)	2.265(2)
$Pt-Cl_1$	2.3445(10)	2.3519(19)	2.3591(19)	2.333(2)
Pt-Cl ₂ (Me)	2.3385(9)	2.3478(19)	2.084(6)	2.356(2)
Bond angles				
$P_1 - Pt - P_2$	96.93(3)	95.65(7)	97.07(7)	97.8(1)
$P_1 - Pt - Cl_1$	84.13(3)	89.63(7)	85.29(7)	89.8(1)
$P_1 - Pt - Cl_2$ (Me)	173.90(3)	175.02(6)	172.0(2)	176.9(1)
$Cl_1 - Pt - Cl_2$ (Me)	89.79(4)	88.15(7)	87.3(2)	87.1(1)
$Cl_1 - Pt - P_2$	174.46(4)	174.61(6)	177.19(7)	172.4(1)
$P_2-Pt-Cl_2$ (Me)	89.10(3)	86.68(7)	90.3(2)	85.3(1)

^a For $4 \cdot CH_2Cl_2$, $P_1 = P_2 = L$; for $5 \cdot 2CH_2Cl_2$, $P_1 = L$, $P_2 = PPh_3$; for 6, $P_1 = P_2 = L$, P_1 trans to Me, P_2 trans to Cl. Note that the atom numbering in Fig. 5 for 6 is slightly different than the convention used here.

Table 3

Table 5 Selected bond lengths (Å) and angles (°) in $PMes_2H^{a}$ and $PMes_2H \cdot BH_3$ (9)

Complex	PMes ₂ H	$PMes_2H \cdot BH_3$ (9)
Bond lengths		
P-C(1)	1.862(7)	1.824(3)
P-C(10)	1.864(7)	1.829(3)
P-H(1)	1.36(7)	1.35(3)
Bond angles		
C(1) - P - C(10)	107.0(3)	110.71(12)
C(1) - P - H(1)	109(3)	104.0(11)
C(10) - P - H(1)	107(3)	97.3(11)

^a Ref. [20].

Table 6 Cone angle data for dimesitylphosphine complexes ^a

Complex	Cone angle (°)			
trans-PdL ₂ Cl ₂ (2 ·2CH ₂ Cl ₂)	147			
cis-PtL ₂ Cl ₂ (4·CH ₂ Cl ₂)	152, 142			
cis-PtL(PPh ₃)Cl ₂ (5 · 2CH ₂ Cl ₂)	148 ^b			
cis-PtL ₂ (Me)(Cl) (6)	156, 154			
$L \cdot BH_3(9)$	146			
cis-Pt(PPh ₃) ₂ Cl ₂ ·C ₃ H ₆ O ^c	143, 150			

^a See Section 4 for details of the calculations.

^b PPh₃ cone angle = 154° .

^c Ref. [17].

compare to Tolman's reported cone angle of 145° for PPh₃ [22].

2.2. Solution structures: fluxional processes

Conformational isomerism due to restricted rotation has often been observed in metal complexes of bulky secondary phosphines. For example, Shaw reported that room-temperature solutions of *trans*-Pt[P(*t*-Bu)₂H]₂Cl₂ contained two conformational isomers; this complex has recently been studied in more detail by Mastrorilli et al. [23]. Similarly, Bushweller's detailed investigation of *trans*-Rh[P(*t*-Bu)₂H]₂(CO)(X) (X = halide) revealed several conformations as a result of restricted rotation about the Rh–P bonds [24], and analogous behavior was observed for Ir[P(*t*-Bu)₂H]₃(Cl) [2c]. We observed similar phenomena in Pt dimesitylphosphine complexes **4–8** by low-temperature NMR spectroscopy.

Although the room-temperature ³¹P NMR spectrum of *cis*-PtL₂Cl₂ (**4**) was very broad, three different signals in about a 1:1:0.15 ratio were observed at -70 °C in CD₂Cl₂ (Table 1). We assign these to two major isomers (A and B) and one minor one (C), although we cannot rule out the possibility that the A and B signals are in fact due to a single conformer which contains two inequivalent dimesitylphosphine ligands [24].

Low-temperature ¹H NMR studies ($-70 \circ C, CD_2Cl_2$) provided additional information on the dynamic processes in 4. As detailed in Section 4, 12 aryl proton signals (8 from the major and 4 from the minor isomers) and 18 methyl signals (12 major, 6 minor) were observed. These observations can be explained if, in the two major isomers, rotation about the P-C and Pt-P bonds is slow on the NMR time scale. If rotation about the P–C bond is slow, the o-Me and m-aryl protons are inequivalent in a given Mes group; if rotation about the Pt-P bond is slow, then there are two types of mesityl groups in a given PMes₂H. The crystal structure (Fig. 2), if maintained in solution at low temperature, would be consistent with these observations. The two major isomers might then be syn and anti conformers, as reported for trans-Pt[P(t-Bu)₂H]₂Cl₂ [23].

Four P–H resonances were also observed (Table 1). Three of these are easily assigned, one each to the major and minor isomers, from matching the P–H couplings in the low temperature ¹H NMR spectrum with those obtained in the low temperature ³¹P NMR spectrum, but the origin of the fourth signal is not clear. These P–H resonances are expected to show an AA'XX' pattern, but either simple doublets or doublet of doublets patterns were observed. If the ²J_{PP} and ³J_{PH} couplings are small, then the signals would appear as a doublet. The doublet of doublets patterns could arise if ²J_{PP} is small. Alternatively, the observed resonances could be due to the inner lines of an AA'XX' pattern, if the low intensity outer peaks are not observed [7].

Similarly, at -20 °C in CD₂Cl₂, the rotation about the P–C and Pt–P bonds in **5** is slow on the NMR time scale, so each of the Mes *m*-aryl protons and *o*-Me groups is inequivalent, consistent with the conformation found in the crystal structure (Fig. 3). Thus, four sharp peaks for the Mes *m*-aryl protons were observed from 6.92 to 6.63 ppm, and four *o*-Me signals appeared at δ 3.38, 2.50, 1.85, and 1.20. Because the two Mes groups are inequivalent, two separate *p*-Me resonances were observed at δ 2.25 and 2.23.

The related complexes **6** and **7** showed similar fluxional behavior, again ascribed to restricted rotation about the Pt–P and P–C bonds, giving rise to four different isomers in each case at low temperature. This could be observed most clearly by ³¹P NMR (Table 1). Five and six of the expected eight P–H resonances could also be observed by low-temperature ¹H NMR for **6** and **7**, respectively (see Section 4 for details).

trans-PtL₂(Et)(I) (8) also showed broad peaks in the room temperature NMR spectra. As for the *cis* isomer 7, four isomers were observed by low-temperature ³¹P NMR (Table 2). However, the lines in the expected AA'XX' patterns could not all be resolved because of weak, overlapping signals. Similarly, the ¹H NMR spectrum (CD₂Cl₂, -70 °C) revealed the most intense

signals of the four expected PH AA'XX' patterns; however, two of these peaks were obscured by Mes resonances (see Table 2 and Section 4).

3. Conclusion

We prepared several simple coordination complexes of the bulky secondary phosphine $PMes_2H$. Its crystallographically determined cone angle of approximately 149° is comparable to that of PPh₃, and comparison of the structures of *cis*-PtL₂Cl₂ (4), *cis*-PtL(PPh₃)Cl₂ (5), and *cis*-Pt(PPh₃)₂Cl₂ shows these ligands to have similar steric and electronic properties. The bulk of dimesitylphosphine is reflected in the dynamic properties of its complexes in solution at low temperature, where restricted rotation about Pt–P and P–C(Mes) bonds was frequently observed.

4. Experimental

4.1. General

Unless otherwise noted, all reactions and manipulations were performed in dry glassware under a nitrogen atmosphere at 20 °C in a dry box or using standard Schlenk techniques. Petroleum ether (b.p. 38-53 °C), ether, THF, CH₂Cl₂ and toluene were dried and degassed using columns with activated alumina [25].

NMR spectra were recorded (at 21 °C unless otherwise noted) with Varian 300 or 500 MHz spectrometers; the latter was used for variable temperature studies. ¹H or ¹³C NMR chemical shifts are reported versus Me₄Si and were determined by reference to the residual ¹H or ¹³C solvent peaks. ³¹P NMR chemical shifts are reported versus H₃PO₄ (85%) used as an external reference. Coupling constants are reported in Hz, as absolute values unless noted otherwise. Unless indicated, peaks in NMR spectra are singlets. Infrared spectra were recorded using KBr pellets on a Perkin Elmer 1600 series FTIR machine and are reported in cm^{-1} . Elemental analyses were provided by Schwarzkopf Microanalytical Laboratory. Low resolution FAB Mass Spectroscopy was performed on a VG ZAB-SE instrument at the University of Illinois.

Unless otherwise noted, reagents were from commercial suppliers. The following compounds were made by the literature methods: Pd(tmeda)Me₂ [6], PMes₂H [20], Pd(cod)Cl₂ [26], Pd(NCPh)₂Cl₂ [27], Pt(NCPh)₂Cl₂ [27], Pt(cod)Cl₂ [28], Pt(cod)(Me)(Cl) [29], and Pt(cod)(Et)(I) [30].

4.2. $cis-Pd(PMes_2H)_2Me_2$ (1). Method 1

Pd(tmeda)Me₂ (80 mg, 0.32 mmol) and PMes₂H (165 mg, 0.610 mmol) were dissolved in 10 ml of THF to give a pink-red solution. The THF was removed under vacuum to give a brownish white solid, which was washed with petroleum ether (4 ml). The resulting blood-red solution was removed using a pipet to give a pink solid, which was dried under vacuum to yield 189 mg (88%) of the product.

Anal. Calc. for $C_{44}H_{52}P_2Pd$: C, 67.40; H, 7.74. Found: C, 67.23; H, 7.32%. ¹H NMR (C_6D_6): δ 6.55 (8H, Mes), 5.97 (d, $J_{PH} = 339$, 2H, PH), 2.33 (broad, 24H, *o*-Me), 2.01 (12H, *p*-Me), 1.00 (m, 6H, Pd-Me). ¹³C{¹H} NMR (C_6D_6): δ 142.7 (Mes), 139.1 (Mes), 130.2 (t, J = 3, Mes), 126.3 (d, J = 26, Mes), 23.7 (Me), 21.2 (Me), 5.0 (dd, J = 105, 10, Pd-Me). IR: 3433, 2922, 2388, 1727, 1600, 1450, 1377, 1133, 1027, 844, 694, 616, 550.

4.3. Method 2

A pale yellow solution of *trans*-Pd(PMes₂H)₂Cl₂ (26 mg, 3.6×10^{-2} mmol, **2**, see below) in 10 ml of THF was cooled to -78 °C and treated with methyllithium (106 µl of 1.4 M solution in ether, 0.15 mmol). The resulting golden solution was stirred for 1 h at -78 °C, then quenched by the addition of one drop of water, which turned the solution orange. The solution was concentrated under vacuum and transferred to a NMR tube. The ³¹P NMR spectrum showed partial conversion (73%) of the dichloro complex **2** to the dimethyl complex **1**. ³¹P NMR (THF/ether): δ -34.8 (AA'XX', **2**), -48.3 (d, J = 339, **1**).

4.4. $trans-Pd(PMes_2H)_2Cl_2$ (2). Method 1

PdCl₂ (57 mg, 0.32 mmol) was treated with concentrated HCl (4 ml) and the brown solution was stirred for 10 min. After addition of 8 ml of absolute ethanol, the solution was stirred for an additional 5 min. A solution of PMes₂H (174 mg, 0.643 mmol) in 4 ml of ether was added, causing a yellow precipitate to form immediately. The mixture was allowed to stir for another 5 min, and then filtered on a frit. The solid was washed with water (1 × 10 ml) and ether (2 × 20 ml) and dried on the frit to give 230 mg, 99%. The yellow solid was recrystallized from methylene chloride/petroleum ether to give yellow crystals of a methylene chloride solvate, as quantified by ¹H NMR integration.

Anal. Calc. for $C_{36}H_{46}Cl_2P_2Pd \cdot 0.6CH_2Cl_2$: C, 57.17; H, 6.19. Found: C, 57.06; H, 6.12%. ¹H NMR (CDCl_3): δ 6.85 (8H, Mes), 6.52 (m, $J_{PP} = 598$, $J_{PH} = 386$, $J_{PH'} = -2$, 2H, P–H, AA'XX'), 2.52 (24H, *o*-Me), 2.25 (12H, *p*-Me). ¹³C{¹H} NMR (CDCl_3, 21 °C): δ 142.5 (t, J = 5, Mes), 140.9 (Mes), 130.1 (t, J = 4, Mes), 122.1 (t, J = 24, Mes), 23.7 (t, *J* = 4, *o*-Me), 21.3 (*p*-Me). IR: 2956, 2922, 2400, 1600, 1556, 1449, 1405, 1374, 1264, 1029, 837.

4.5. Method 2

A yellow solution of Pd(cod)Cl₂ (22 mg, 0.11 mmol) in methylene chloride was treated with PMes₂H (86 mg, 0.32 mmol), causing the solution to turn orange. ³¹P NMR (CH₂Cl₂): δ -41.0 (AA'XX', $J_{PP} = 597$, $J_{PH} =$ 386, $J_{PH'} = -0.07$). Recrystallization from methylene chloride and petroleum ether gave yellow crystals of compound **2**.

4.6. Method 3

A brown slurry of Pd(NCPh)₂Cl₂ (22 mg, 5.7×10^{-2} mmol) in 10 ml of CH₂Cl₂ was treated with PMes₂H (46.5 mg, 0.173 mmol), which gave a homogeneous yellow solution. ³¹P{¹H} NMR (CH₂Cl₂): δ -41.0.

4.7. $trans-Pt(PMes_2H)_2Cl_2$ (3). Method 1

PMes₂H (50 mg, 0.19 mmol) was dissolved in 10 ml of ethanol with gentle heating, then cooled to room temperature. A red-orange solution of K₂PtCl₄ (38 mg, 9.1×10^{-2} mmol) in 14 ml of water was added to the phosphine solution, and a fine white precipitate immediately formed. The mixture was filtered through a fine frit, and the solid was air dried to give 38 mg (51%) of the product as a very fine white powder. Recrystallization from methylene chloride/petroleum ether gave yellow crystals of a methylene chloride solvate. These crystals desolvated under vacuum to give an analytically pure sample.

Anal. Calc. for C₃₆H₄₆Cl₂P₂Pt: C, 53.60; H, 5.75. Found: C, 53.58; H, 5.91%. ¹H NMR (CDCl₃): δ 6.85 (8H, Mes), 6.66 (m, $J_{PP} = 523$, $J_{PH} = 396$, $J_{P'H} = -2$, 2H, P-H, AA'XX'), 2.53 (24H, *o*-Me), 2.25 (12H, *p*-Me). ¹³C{¹H} NMR (CDCl₃): δ 142.6 (t, J = 6, Mes), 140.7 (Mes), 130.2 (t, J = 4, Mes), 121.5 (t, J = 28, Mes), 23.5 (t, J = 4, *o*-Me), 21.3 (*p*-Me). IR: 2956, 2731, 2404, 1599, 1559, 1446, 1407, 1373, 1289, 1243, 1029, 962, 933, 905, 849, 708, 623, 550, 420.

4.8. Method 2

A CH₂Cl₂ solution of PtCl₂(NCPh)₂ (10 mg, 2.2×10^{-2} mmol) was treated with PMes₂H (15 mg, 4.2×10^{-2} mmol). The ³¹P{¹H} NMR spectrum of the reaction mixture showed that **3** had formed: δ -37.9 ($J_{Pt-P} = 2506$).

4.9. Method 3

A NMR tube containing a clear solution of *cis*-PtCl₂(PMes₂H)₂ (4) (20 mg, 2.5×10^{-2} mmol, 4, see

below) in 1 ml of CH_2Cl_2 was suspended about 3 cm from an Ace-Hanovia Photochemical Lamp with a mercury bulb. The tube was irradiated and monitored by ${}^{31}P{}^{1}H{}$ NMR. After 9 h the solution was pale yellow and the ${}^{31}P$ NMR spectrum showed about 10% conversion of 4 to 3.

4.10. $cis-PtCl_2(PMes_2H)_2$ (4)

A solution of $Pt(cod)Cl_2$ (100 mg, 0.267 mmol) in CH_2Cl_2 (4 ml) was treated with $PMes_2H$ (145 mg, 0.535 mmol). Petroleum ether (10 ml) was layered on the methylene chloride and the clear solution was cooled to -20 °C, yielding white crystals after several days. The mother liquor was removed and the crystals dried under vacuum to give 151 mg (70%) of product. ¹H NMR integration and elemental analysis showed that these crystals contained CH_2Cl_2 .

Anal. Calc. for $C_{36}H_{46}Cl_2P_2Pt \cdot 0.8CH_2Cl_2$: C, 50.54; H, 5.49. Found: C, 50.12; H, 5.25%. ³¹P{¹H} NMR (CD₂Cl₂, 21 °C): δ -47.5 (very broad, $J_{Pt-P} = 3508$). ¹H NMR (CD₂Cl₂, 21 °C): δ 6.78 (broad), 2.39 (very broad), 2.26 (broad). ¹³C{¹H} NMR (CD₂Cl₂, 21 °C): δ 142.5 (broad), 141.7, 130.6, 23.7 (broad), 21.1. IR: 3444, 2955, 2911, 2722, 2422, 1600, 1555, 1444, 1405, 1377, 1288, 1255, 1027, 950, 900, 877, 850, 727, 616, 550, 444. FAB mass spectrum (Magic Bullet): *m/z* 870, 734 (PtPMes₂H)(PMes₂)⁺), 600, 463, 343, 271 (PMes₂H), 234, 135, 119 (Mes).

¹H NMR (CD₂Cl₂, -70 °C): Three isomers A–C were observed; unless otherwise noted, the ¹H NMR signals are assigned to A and B, with specific assignments given where possible. δ 7.02 (C), 6.98 (d, J = 3, 2H, Mes), 6.94 (2H, Mes), 6.91 (C), 6.89 (d, J = 428, PH, C), 6.88 (d, J = 3, 2H, Mes), 6.86 (C), 6.82 (2H, Mes), 6.78 (C), 6.77 (d, J = 430, 2H, PH, B), 6.73 (2H, Mes), 6.68 (2H, Mes), 6.52 (2H, Mes), 6.48 (C), 6.11 (2H, Mes), 5.55 (apparent dd, J = 408, 10, 2H, PH, A), 5.16 (apparent dd, J = 414, 10, PH, C), 3.41 (6H), 3.37 (6H), 3.33 (C), 3.20 (C), 2.65 (6H), 2.42 (C), 2.26 (6H), 2.23 (6H), 2.22 (6H), 2.08 (6H), 2.07 (6H), 2.03 (C), 1.99 (6H), 1.98 (6H), 1.89 (6H), 1.39 (6H), 1.20 (C), 0.90 (C). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 143.9 (d, J = 15), 143.4 (d, J = 14), 143.0 (d, J = 8), 142.0 (m), 141.5 (m), 141.3 (d, J = 6), 141.1 (m), 140.9 (m), 139.9 (m), 139.7 (m), 139.4 (m), 131.0-130.8 (m), 130.3 (d, J = 10), 129.7(m), 129.4 (d, J = 8), 129.2 (m), 121.7, 121.2, 118.2, 118.0, 117.9, 117.4, 117.1, 116.7 (m), 27.1 (d, J = 9), 26.4 (d, J = 10), 22.6–22.2 (m), 21.7 (m), 20.9–20.5 (m).

¹H NMR (C₆D₅Cl, 21 °C): δ 6.53 (broad, Mes), 2.31 (broad, *o*-Me), 2.05 (*p*-Me). ¹H NMR (C₆D₅Cl, 100 °C): δ 6.57 (8H, Mes), 6.34 (d, *J* = 414, 2H, PH), 2.38 (24H, *o*-Me), 2.06 (12H, *p*-Me). ³¹P{¹H} NMR (C₆D₅Cl, 21 °C): δ -48.7 (very broad).

4.11. $cis-Pt(PMes_2H)(PPh_3)Cl_2$ (5)

PPh₃ (49 mg, 0.19 mmol) was dissolved in methylene chloride (6 ml) to give a clear solution. *cis*-PtCl₂(PMes₂H)₂ (100 mg, 0.124 mmol) was added. No color change occurred, and the solid did not dissolve completely. The solution was filtered through Celite to give a yellow filtrate. After the solution was left standing at room temperature overnight, it turned clear. The solution was heated to 45 °C for 5 h using a water bath. The solvent was then removed under vacuum to give white crystals, which were recrystallized from methylene chloride/petroleum ether to give 51 mg (52%) of white solid which was a CH₂Cl₂ solvate, according to the ¹H NMR spectrum in CDCl₃. Recrystallization from THF/ ether gave analytically pure material.

Anal. Calc. for $C_{36}H_{38}Cl_2P_2Pt$: C, 54.14; H, 4.80. Found: C, 54.45; H, 4.60%. ¹H NMR (CD₂Cl₂, 21 °C): δ 7.66–7.62 (m, 6H, Ph), 7.47 (m, 3H, Ph), 7.36–7.32 (m, 6H, Ph), 6.89–6.62 (broad, 4H, Mes), 4.89 (dd, J =409, 12, 1H, PH), 3.42 (broad, 3H, *o*-Me), 2.54 (broad, 3H, *o*-Me), 2.26 (6H, *p*-Me), 1.87 (broad, 3H, *o*-Me), 1.26 (broad, 3H, *o*-Me). ¹H NMR (CD₂Cl₂, -20 °C): δ 7.61 (broad, 6H, Ph), 7.48–7.46 (m, 3H, Ph), 7.35–7.32 (m, 6H, Ph), 6.92 (1H, Mes), 6.86 (1H, Mes), 6.75 (1H, Mes), 6.63 (1H, Mes), 4.82 (dd, J = 414, 13, 1H, PH), 3.38 (3H, *o*-Me), 2.50 (3H, *o*-Me), 2.25 (3H, *p*-Me), 2.23 (3H, *p*-Me), 1.85 (3H, *o*-Me), 1.20 (3H, *o*-Me). IR: 3436, 3025, 2919, 2731, 2413, 1601, 1431, 1378, 1096, 1025, 943, 902, 849, 743, 690, 620, 532.

4.12. $cis-Pt(PMes_2H)_2(Me)(Cl)$ (6)

A light brown solution of Pt(cod)(Me)(Cl) (100 mg, 0.283 mmol) in CH_2Cl_2 (6 ml) was treated with $PMes_2H$ (153 mg, 0.565 mmol). Petroleum ether (11 ml) was layered on the solution and the mixture was cooled to -20 °C to give 109 mg (49%) of white crystals in two crops.

Anal. Calc. for C₃₇H₄₉ClP₂Pt: C, 56.52; H, 6.28. Found: C, 56.43; H, 6.25%. ³¹P{¹H} NMR (CD₂Cl₂, 21 °C): δ -33.9 ($J_{Pt-P} = 1492$), -45.1 ($J_{Pt-P} = 4344$). ¹H NMR (CD₂Cl₂, 21 °C): δ 6.74 (broad, Mes), 2.34 (broad, o-Me), 2.23 (p-Me), 0.60 (m, $J_{Pt-P} = 50$, Pt-Me). ¹H NMR (CD₂Cl₂, -70 °C): δ 6.97–6.79 (m, Mes), 6.72-6.67 (m, Mes), 6.59-6.58 (m, Mes), 6.51-6.48 (m, Mes), 6.42 (Mes), 6.37 (apparent dd, J = 449, 5, 1H, PH), 6.10-6.08 (m), 6.03 (Mes), 6.00 (Mes), 5.71 (d, J = 434, 1H, PH), 5.26 (apparent dd, J = 403, 17, 1H, PH), 5.13 (apparent dd, J = 360, 5, 1H, PH), 4.56 (apparent dd, J = 366, 7, 1H, PH), 3.26-3.20 (m, Me), 3.16 (Me), 3.00 (Me), 2.65–2.58 (m, Me), 2.52 (Me), 2.38 (Me), 2.22–2.18 (m, Me), 2.06–2.01 (m, Me), 1.95–1.93 (m, Me), 1.77 (Me), 1.66 (Me), 1.52 (Me), 1.47 (Me), 1.30 (Me), 0.86 (Me), 0.51–0.37 (Pt–Me). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, 21 °C): δ 142.7 (m), 142.4 (very broad), 140.8 (Mes), 140.6 (Mes), 140.0 (Mes), 130.2 (m, Mes), 123.5 (broad), 122.5, 121.5 (broad), 23.6–22.5 (very broad), 23.1 (m, *o*-Me), 21.1 (*p*-Me), 21.0 (*p*-Me), 3.5 (dd, *J* = 96, 6, Pt–Me). IR: 3444, 2955, 2911, 2722, 2400, 1600, 1555, 1444, 1405, 1377, 1255, 1200, 1027, 944, 900, 850, 805, 700, 611, 550, 461.

4.13. $cis-Pt(PMes_2H)_2(Et)(I)$ (7)

Pt(cod)(Et)(I) (418 mg, 0.910 mmol) was dissolved in methylene chloride (5 ml). PMes₂H (492 mg, 1.82 mmol) was added. Petroleum ether (3 ml) was layered on top of the yellow solution. The solution was refrigerated at 3 °C to give off-white crystals (480 mg, 60%, in two crops).

Anal. Calc. for C₃₈H₅₁IP₂Pt: C, 51.18; H, 5.76. Found: C, 51.07; H, 5.85%. ¹H NMR (CDCl₃): δ 6.71 (broad, 8H, Mes), 2.23 (broad m, 36H, Me), 1.07 (broad, 5H, Et). The PH peaks were not observed. ¹³C{¹H} NMR (CDCl₃): δ 143.0 (very broad, Mes), 140.9 (Mes), 140.7 (Mes), 140.0 (Mes), 130.4 (broad m, Mes), 125.4 (Mes), 124.9 (Mes), 121.5 (Mes), 24.1–22.6 (very broad, o-Me), 21.8 (p-Me), 21.7 (p-Me), 21.6 (p-Me), 18.8 (CH₂CH₃), 10.4 (d, J = 93, CH₂CH₃). IR: 2915, 2844, 2402, 1603, 1556, 1447, 1407, 1374, 1292, 1263, 1186, 1030, 946, 905, 848, 734, 612, 572, 552, 506, 457, 426, 408. ¹H NMR (CD₂Cl₂, 21 °C): δ 6.77 (broad, 8H, Mes) 2.6–2.0 (broad m, o-Me), 2.22 (p-Me), 1.02 (broad, 5H, Et). The PH signals were not observed. ³¹P{¹H} NMR (CD₂Cl₂, 21 °C): δ –39.9 (very broad, $J_{\text{Pt-P}} \approx 4500$) -43.5 (very broad, $J_{\text{Pt-P}} \approx 1310$).

¹H NMR (CD₂Cl₂, -60 °C): Six different PH groups were observed, confirmed by ${}^{1}H{}^{31}P{}$ NMR: δ 6.82 (obscured by Mes, d, J = 353, 1H, PH), 6.75 (obscured by Mes, d, J = 324, 1H, PH), 5.86 (apparent dd, J = 395, 16, 1H, PH), 5.41 (apparent dd, J = 400, 17, 1H, PH), 5.18 (apparent dd, J = 354, 6, 1H, PH), 4.71 (apparent dd, J = 361, 8, 1H, PH). Additional signals: $\delta 6.95-6.88$ (m, Mes), 6.81–6.79 (m, Mes), 6.69–6.67 (m, Mes), 6.57 (Mes), 6.46 (Mes), 6.35–6.32 (m, Mes), 6.02–5.99 (m, Mes), 3.18-3.17 (m, Me), 3.12-3.11 (m, Me), 3.01 (Me), 2.89 (Me), 2.64 (Me), 2.59 (Me), 2.54 (Me), 2.50 (Me), 2.32-2.27 (m, Me), 2.23-2.18 (broad m, Me), 2.08-2.01 (broad m, Me), 1.99 (Me), 1.91 (Me), 1.88 (Me), 1.85 (Me), 1.80 (Me), 1.76 (Me), 1.66 (Me), 1.50-1.48 (m, Me), 1.33–1.26 (m, Me), 1.16–1.12 (m, Me), 0.94 (Me), 0.83 (Me), 0.71–0.66 (m, Pt–Et), 0.59–0.54 (m, Pt–Et).

4.14. $trans-Pt(PMes_2H)_2(Et)(I)$ (8)

cis-PtL₂(Et)(I) (91 mg, 0.10 mmol) was dissolved in approximately 1 ml of CDCl₃ to give a yellow solution, which was heated for 4 days at 40 °C and monitored by ¹H NMR. When the isomerization to the *trans* compound was complete, the contents of the NMR tube were poured into a vial and petroleum ether was layered on top. After 3 days, 72 mg (80%) of a bright yellow precipitate formed. Recrystallization from CH₂Cl₂/ether gave analytically pure light yellow crystals.

Anal. Calc. for $C_{38}H_{51}IP_2Pt$: C, 51.18; H, 5.76. Found: C, 50.81; H, 5.80. ³¹P{¹H} NMR (CDCl₃): δ -39.5 (broad, $J_{Pt-P} = ca. 3350$). ¹H NMR (CDCl₃): δ 6.88 (8H, Mes), 2.48 (broad, Me), 2.30 (broad, Me), 1.10 (q, $J_{H-H} = 7$, $J_{Pt-H} = 114$, 2H, CH_2CH_3), 0.68 (t, $J_{H-H} = 7$, $J_{Pt-H} = 70$, 3H, CH_2CH_3). The PH peaks were not observed. ¹³C{¹H} NMR (CD₂Cl₂): δ 143.1 (Mes), 140.9 (Mes), 130.6 (Mes), 124.1 (broad, Mes), 23.8 (broad, *o*-Me), 21.5 (*p*-Me), 17.6 (CH₂CH₃), 6.0 ($J_{Pt-C} = 671$, CH_2CH_3). IR: 3440, 2953, 2906, 2846, 2728, 2395, 1604, 1556, 1443, 1408, 1378, 1289, 1259, 1200, 1063, 1028, 850, 802, 612, 553, 422.

¹H NMR (CD₂Cl₂, 21 °C): δ 6.96 (8H, Mes), 2.51 (24H, o-Mes), 2.42 (12H, p-Mes), 1.16 (q, $J_{H-H} = 7$, $J_{Pt-H} = 83$, CH_2CH_3), 0.73 (t, $J_{H-H} = 7$, $J_{Pt-H} = 70$, CH_2CH_3). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 21 °C): δ -39.0 $(J_{Pt-P} = 3099)$. ¹H NMR (CD₂Cl₂, -70 °C): The four expected PH signals were observed by ¹H and ¹H ${^{31}P}$ NMR, but their low intensity and the presence of Mes signals precluded detailed analysis of the AA'XX' patterns. Instead we report the separation between the two most intense lines of these patterns for a given resonance. δ 7.35 (apparent d, J = ca. 400), 7.1 (obscured by Mes), 6.8 (apparent d, J = 355), 6.15 (apparent d, J = 375). Additional signals: δ 7.15–6.70 (broad m, Mes), 3.23 (Me), 3.22 (Me), 3.17 (Me), 3.03 (Me), 2.62 (Me), 2.34 (Me), 2.29 (Me), 2.27 (Me), 2.08 (Me), 2.04 (Me), 1.87 (Me), 1.75 (Me), 1.67 (Me), 1.51 (Me), 1.50 (Me), 1.16–1.11 (m, Me), 0.89–0.87 (m, Me), 0.80– 0.60 (broad m, Me), 0.45 (m, Pt-Et), 0.29 (m, Pt-Et).

¹H NMR (C₆D₅Cl, 21 °C): δ 6.72 (Mes), 2.52 (*o*-Me), 2.07 (p-Me), 1.35 (m, Pt–Et), 0.84 (m, Pt–Et). The PH resonances were not observed. ³¹P{¹H} NMR (C₆D₅Cl, 21 °C): δ –36.8 (very broad, $J_{Pt-P} =$ ca. 3300). ¹H NMR (C₆D₅Cl, 80 °C): δ 7.24 (apparent d, J = 384, $J_{Pt-H} =$ 26, perhaps the most intense two peaks of an AA'XX' pattern), 6.72 (Mes), 2.51 (*o*-Me), 2.08 (*p*-Me), 1.33 (q, $J_{HH} =$ 8, $J_{Pt-H} =$ 84, CH_2 CH₃), 0.84 (t, $J_{HH} =$ 8, $J_{Pt-H} =$ 72, CH₂CH₃).

4.15. $PMes_2H \cdot BH_3$ (9)

A clear solution of PMes₂H (300 mg, 1.11 mmol) in THF (6 ml) was cooled to 0 °C and treated with 834 µl of BH₃·SMe₂ (1.67 mmol). The solution was warmed to room temperature with stirring. The solvent was removed under vacuum to give a white solid, which was recrystallized from petroleum ether at 0 °C to give large white crystals (297 mg, 95%, in four crops). *Anal.* Calc. for C₁₈H₂₆BP: C, 76.08; H, 9.22. Found: C, 75.73; H, 9.37%. ³¹P{¹H} NMR (C₆D₆): δ -27.3 (broad). ³¹P NMR (C₆D₆): δ -27.3 (broad d, J_{PH} = 383). ¹H NMR (C₆D₆): δ 6.53 (d, J = 3, 4H, Mes), 6.42 (dq, J = 382, 8, PH), 2.29 (12H, *o*-Me), 1.96 (6H, *p*-Me). The BH₃ protons were not observed. ¹³C{¹H} NMR (C₆D₆): δ 143.0 (d, J = 9, Mes), 141.1 (d, J = 2, Mes), 130.8 (d, J = 8, Mes), 123.4 (d, J = 50, Mes), 22.3 (d, J = 6, *o*-Me), 21.2 (*p*-Me). IR: 3445, 3026, 2952, 2732, 2406, 2376, 2338, 2255, 2115, 1725, 1633, 1602, 1446, 1384, 1135, 1061, 1030, 967, 943, 893, 849, 756, 694, 626, 545.

4.16. Crystallographic structural determination

Crystal, data collection, and refinement parameters are given in Table 3. A Siemens P4 diffractometer equipped with a CCD detector was used. The structures were solved using direct methods, completed by subsequent difference Fourier syntheses and refined by fullmatrix least-squares procedures. All non-hydrogen atoms were refined anisotropically. The P–H hydrogens were located from the electron difference map and allowed to refine isotropically. All software and sources of the scattering factors are contained in the SHELXTL (5.10) program library (G. Sheldrick, Siemens XRD, Madison, WI). The figures were prepared using either SHELXTL OT ORTEP-3 for Windows [31].

4.17. Cone angle calculations

Cone angles were calculated using the program STERIC [21], as previously reported [32]. Hydrogen atoms, as placed in the crystallographic determination, were fixed at a C-H distance of 1.1 Å, and a P-H distance of 1.42 Å [33]. Calculations on $5 \cdot 2CH_2Cl_2$ showed that changing the P-H distance from 1.22 to 1.50 Å had minimal effect (change from 147° to 149°) on the cone angle. The M-P bond distances were fixed at 2.28 Å [22]. The CPK van der Waals radii set was used for all cone angle calculations.

5. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 181084– 181086 and 181088–181089. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank the NSF Career Program, DuPont, and Union Carbide (Innovation Recognition Award) for support, and the Department of Education for a GAANN fellowship for M.A.Z. The University of Delaware acknowledges the NSF (Grant CHE-9628768) for their support of the purchase of the CCD-based diffractometer.

References

- W. Levason, in: F.R. Hartley (Ed.), The Chemistry of Organophosphorus Compounds, vol. 1, Wiley, Chichester, England, 1990, pp. 567–641.
- [2] For selected examples of secondary phosphine complexes, see: (a)
 C. Masters, B.L. Shaw, J. Chem. Soc. (A) (1971) 3679; (b) P. Leoni, Organometallics 12 (1993) 2432; (c) H.-C. Bottcher, M. Graf, K. Merzweiler, Polyhedron 16 (1997) 341; (d) R.G. Hayter, J. Am. Chem. Soc. 84 (1962) 3046; (e) R.J. Forder, I.S. Mitchell, G. Reid, R.H. Simpson, Polyhedron 13 (1994) 2129; (f) R. Giannandrea, P. Mastrorilli, C.F. Nobile, Inorg. Chim. Acta 284 (1999) 116; (g) T. Campbell, A.M. Gibson, R. Hart, S.D. Orchard, S.J.A. Pope, G. Reid, J. Organomet. Chem. 592 (1999) 296; (h) M.L. Buil, M.A. Esteruelas, E. Onate, N. Ruiz, Organometallics 17 (1998) 3346; (i) P. Leoni, G. Chiaradonna, M. Pasquali, F. Marchetti, A. Fortunelli, G. Germano, Inorg. Chim. Acta 264 (1997) 185; (j) A. Albinati, F. Lianza, M. Pasquali, M. Sommovigo, P. Leoni, P.S. Pregosin, H. Ruegger, Inorg. Chem. 30 (1991) 4690.
- [3] I.V. Kourkine, M.D. Sargent, D.S. Glueck, Organometallics 17 (1998) 125.
- [4] M.A. Zhuravel, N.S. Grewal, D.S. Glueck, K.-C. Lam, A.L. Rheingold, Organometallics 19 (2000) 2882.
- [5] For complementary studies of mesitylphosphine (PMesH₂), see: I.V. Kourkine, S.V. Maslennikov, R. Ditchfield, D.S. Glueck, G.P.A. Yap, L.M. Liable-Sands, A.L. Rheingold, Inorg. Chem. 35 (1996) 6708.
- [6] W. de Graaf, J. Boersma, W.J.J. Smeets, A.L. Spek, G. van Koten, Organometallics 8 (1989) 2907.
- [7] R.K. Harris, Can. J. Chem. 42 (1964) 2275.
- [8] (a) A. Gillie, J.K. Stille, J. Am. Chem. Soc. 102 (1980) 4933;
 (b) J. Krause, G. Cestaric, K.-J. Haack, K. Seevogel, W. Storm, K.-R. Pörschke, J. Am. Chem. Soc. 121 (1999) 9807.
- [9] F.R. Hartley, The Chemistry of Platinum and Palladium, Wiley, New York, 1973.

- [10] P. Budzelaar, gNMR, V3.6.5, Cherwell Scientific Publishing, Oxford, 1996.
- [11] P.S. Pregosin, R.W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, Springer-Verlag, New York, 1979.
- [12] R.G. Pearson, Inorg. Chem. 12 (1973) 712.
- [13] J. Vicente, A. Arcas, D. Bautista, P.G. Jones, Organometallics 16 (1997) 2127.
- [14] S.H. Mastin, P. Haake, J. Chem. Soc., Chem. Commun. (1970) 202.
- [15] G.K. Anderson, J.A. Davies, D.J. Schoeck, Inorg. Chim. Acta 76 (1983) L251.
- [16] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem. Soc., Dalton Trans. (1989) S1.
- [17] G.K. Anderson, H.C. Clark, J.A. Davies, G. Ferguson, M. Parvez, J. Cryst. Spectr. Res. 12 (1982) 449.
- [18] F.R. Hartley, Chem. Soc. Rev. 2 (1973) 163.
- [19] J.M. Brunel, B. Faure, M. Maffei, Coord. Chem. Rev. 178–180 (1998) 665.
- [20] R.A. Bartlett, M.M. Olmstead, P.P. Power, G.A. Sigel, Inorg. Chem. 26 (1987) 1941.
- [21] (a) B.C. Taverner, J. Comput. Chem. 17 (1996) 1612;
 (b) B.C. Taverner, STERIC 1.12B, 1997. Available on the Internet at http://www.gh.wits.ac.za.
- [22] C.A. Tolman, Chem. Rev. 77 (1977) 313.
- [23] (a) A. Bright, B.E. Mann, C. Masters, B.L. Shaw, R.M. Slade, R.E. Stainbank, J. Chem. Soc. (A) (1971) 1826;
 (b) R. Giannandrea, P. Mastrorilli, M. Palma, F.P. Fanizzi, U. Englert, C.F. Nobile, Eur. J. Inorg. Chem. (2000) 2573.
- [24] C.H. Bushweller, C.D. Rithner, D.J. Butcher, Inorg. Chem. 25 (1986) 1610.
- [25] A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, Organometallics 15 (1996) 1518.
- [26] D. Drew, J.R. Doyle, Inorg. Synth. 28 (1990) 346.
- [27] G.K. Anderson, M. Lin, Inorg. Synth. 28 (1990) 60.
- [28] J.X. McDermott, J.F. White, G.M. Whitesides, J. Am. Chem. Soc. 98 (1976) 6521.
- [29] H.C. Clark, L.E. Manzer, J. Organomet. Chem. 59 (1973) 411.
- [30] T.G. Appleton, M.A. Bennett, Inorg. Chem. 17 (1978) 738.
- [31] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.
- [32] J.M. Smith, N.J. Coville, L.M. Cook, J.C.A. Boeyens, Organometallics 19 (2000) 5273.
- [33] CRC Handbook of Chemistry and Physics, 71st ed., CRC Press, Boca Raton, FL, 1990.