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The remarkable kinetic facility with which early lanthanide
alkyl and—heteroatom bonds undergo insertion of unactivated
alkené-2 and alkyné* functionalities within bis(pentamethyl-
cyclopentadienyl)metal environmeht®.g., eqs 1 and 2; Cp
= 55%-MesCs; X = alkyl, NR;, PR has recently been docu-
mented, as has the susceptibility of the resulting-Cnbonds
to protonolysis:® These results raise the interesting question
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of whether lanthanide-mediated-Gl/C—C fusions could be
coupled in sequence to assemble, in conjunction with proto-
nolysis, complex polycyclic, heteroatom-containing skeletons
(e.g., pyrrolizidine, indolizidine, and other alkaloid frame-
worksP€in a single catalytic reaction. We report here the facile,
regiospecific organolanthanide-catalyzed bicyclization of ami-

nodiolefins, aminodialkynes, and aminoalkenalkynes to access
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Table 1. Intramolecular Hydroamination/Bicyclization Results
Entry Substrate Product N, h'°C)  Yield (%)
Ph
L. N/~ N 1221’ 68
1 2
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3 4
iM SiMe; ’
3 =" C'// 2660 91¢f
) N NS 1.7(60)"
s 6
_ SiMe3 iMeg
4. G{f /\f 12921y 90°F
N N
1 8
= 74(21)* e
5. C»"f/‘/ Cb“ 13221)° 9
9 10
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H = d
. Qi Qo 160" %
u 2
& a,¢ d
7. N~ 521) 88
K] 14
= 2(21)*
8. H = = 14(60)* 92¢
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aCpP,SmMCH(TMS) as precatalys Me,SiCp',NdCH(TMS), as
precatalyst: NMR and preparative scale reactiofissolated yield.
eYield determined byH NMR and GC/MS after vacuum transfer of
the volatile products. Traces of other isomers present; see text.

a variety of such architectures, as well as initial observations
regarding scope and mechanism.

The unsaturated difunctional amine substrates shown in Table
1 were straightforwardly synthesized, purified, and characterized
by standard methodologi€sReactions with precatalysts Gp
SMCH(TMS)!® and MeSiCp';NdCH(TMS), (Cp' = #°
MesCs)? were carried out in gHg/C¢Ds under rigorously
anhydrous/anaerobic conditions ([catalyst] 7.5—-15 mM;
substrate:catalyst 50:1)8 Isolated yields in Table 1 refer to
products isolated by distillation or column chromatography.
With the exception of entries 3 and 4 (vide infra), bicyclizations
proceed with=95% regioselectivity, as ascertained'byNMR
and GC/MS, and at the turnover frequenciég) (indicated.
Product structure and stereochemistry were established by 1-D
and 2-DH/13C NMR, HRMS, and other standard technig8es.
It can be seen that alkyne, alkene; alkyne, alkyne; and alkene,
alkene bicyclizations can all be effected to yield a variety of
pyrrolizidine and indolizidine skeletort€. Thus, entries 1 and
2 demonstrate clean and raphd @s high as 7771 at 21°C)
sequential alkyne, alkene insertive bicyclization. That alkyne
insertion into LA-N bonds is expected to be more rapid and
exothermic than that of olefidgwhich in this case would also
yield strained three-membered rings) suggests the representative
mechanistic scenario portrayed in Scheme 1. Further evidence
for this pathway derives from entries 3 and 4, in which the
second (olefinic) insertion into the-silylvinyl —lanthanide
linkage is arrested (slow, precedented catal{titouble bond
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Scheme 1. Proposed Pathway for

Organolanthanide-Catalyzed SequentiaiNCand C-C
Bond Formation
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migration occurs in entry 3 instead), presumably due to a
combination of electroni€ and steric impediments. The two
products indicated each containl0% of other uncyclized

double bond positional isomers. Entry 5 illustrates rapid
sequentlal alkyne, alkyne insertive bicyclization to introduce
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illustrates that alkene, alkyne bicyclization can be employed to
produce arexcalkene-functionalized pyrrolizidine. In this case,
initial olefinic insertion into the LA-N bond2¢ is favored,
doubtless due to the short alkyne connecting linkage. The
stereochemistry 016 is assigned by analogy to that ®, by
NOE difference spectroscopy, and by the exp€eete course
of the alkyne insertion process.

In regard to reaction mechanism, %hNMR kinetic analysis
of the Cp,Sm-catalyzed 1— 12 transformation indicates zero-
order behavior in [substrate] over a 20-fold concentration range
and first-order behavior in [Sm] over a 15-fold concentration
range (eq 3), implicating an intramolecular, insertive process
as the turnover-limiting step. Further support for a turnover-

®3)

limiting insertion scenario is found in the pronounced correlation
of 1 — 2 turnover frequencies (at constant [@m], [substrate],
and temperature) with decreasing eight-coordinat” lianic
radiug3 (Ln (ionic radius, A),Ny): La (1.16), 148; Nd (1.11),
45; Sm (1.08), 17; Lu (0.977)%0.2 hr1). Similar trends obtain
in a variety of CfpLn-catalyzed processes, where the turnover-
limiting step is olefin insertioA?2a.c.14

In summary, these results demonstrate that organolanthanide
centers can mediate unusual tandem sequences of insertNe C
and C-C bond-forming processes and that such transformations
can be readily integrated into novel and regioselective catalytic
cycles. Of note is the attraction of assembling pyrrolizidine
and indolizidine skeletons having varying degrees of unsatura-
tion, hence points for subsequent functionalization, in a single
catalytic cycle. Additional applications are currently under
investigation.

v = K[Sm]'[substrate]
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of 10is assigned from NOE difference spectroscopy. Entries
6 and 7 illustrate alkene, alkene bicyclization to yield the
saturated (known) pyrrolizidin&2'! and indolizidinel4 (cis:
trans = 45:55 and 85:15%2 respectively). Entry 8 further
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