Photo-induced ligand substitution at a remote site *via* electron transfer in a porphyrin-appended rhenium carbonyl supermolecule[†]

Anders Gabrielsson,^a František Hartl,^b John R. Lindsay Smith^a and Robin N. Perutz^{*a}

^a Department of Chemistry, University of York, York, UK YO10 5DD. E-mail: rnp1@york.ac.uk
 ^b Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht, 166, NL-1018 WV Amsterdam, The Netherlands. E-mail: hartl@science.uva.nl

Received (in Cambridge, UK) 3rd January 2002, Accepted 6th March 2002 First published as an Advance Article on the web 2nd April 2002

The photochemical and electrochemical properties of a Znporphyrin appended rhenium(1) tricarbonyl bipyridine 3-Me-pyridine complex have been investigated; visible-light sensitisation of electron transfer results in ligand substitution at a site remote from the chromophore.

Molecular dyads consisting of a photosensitiser and an electron acceptor have been used in conjunction with an external electron donor as mimics of photosynthesis.¹ Complexes of the type $[\text{Re}^{I}(\text{CO})_{3}(\text{bpy})\text{L}]^{n}$ (n = 0, +1) have been studied both for reduction of carbon dioxide, and as components of supramolecular assemblies.^{2–7} We show that a metalloporphyrin covalently linked to a $[\text{Re}^{I}(\text{CO})_{3}(\text{bpy})\text{L}]$ unit sensitises the rhenium moiety towards photo-reduction. Low energy irradiation results in expulsion of a ligand at a site remote from the chromophore. Electrochemical studies are consistent with reaction *via* electron transfer.

Compound 1^+ OTf⁻ was synthesised from compound 2 by removing the axial bromide ligand with AgOTf in the presence of 3-Me-pyridine in refluxing THF.[†] The synthesis of compound 2 has been described elsewhere.²

Complexes 1⁺ and 2 are stable towards photolysis in THF. Their UV-Vis spectra are completely dominated by the porphyrin absorption bands. The MLCT band of the Re-(CO)₃(bpy) unit which is normally found at *ca*. 400 nm is masked by the porphyrin Soret band. Quenching of steady state fluorescence provides evidence of excited state interaction in 1⁺ and 2.[†] On photolysis of complex 1⁺ with long-wavelength light ($\lambda > 495$ nm) in the presence of triethylamine, the IR spectrum reveals that a new metal carbonyl complex is formed. Comparison with [Re(CO)₃(bpy)(THF)]⁺ shows that the axial ligand is displaced by the solvent to yield the THF complex 3⁺ (Fig. 1(a), Table 1).⁸ When the photoreaction was repeated in the presence of excess bromide and triethylamine, complex 2 was formed quantitatively. While the IR spectra from these

 \dagger Electronic supplementary information (ESI) available: energy balance, synthesis and characterisation of 1+OTf- and fluorescence spectra of 1+, 2 and 5. See http://www.rsc.org/suppdata/cc/b2/b200127f/

reactions show 18-electron products only, photolysis in the presence of a trace of free 3-Me-pyridine shows characteristic IR features of the radical 1 (Table 1). Photolysis of 1⁺ with Et₃N and excess 3-Me-pyridine in PrCN provides evidence for a rhenium bipyridine-based radical, either 1 or 4 by EPR (g = 2.003, peak-to-peak separation = 6.9 mT) and IR spectroscopy, as well as the cationic solvento complex 4⁺ (Table 1).^{9,10}

The excitation in the visible region must occur on absorption by the porphyrin macrocycle that acts as a sensitiser towards visible light; product formation depends on electron transfer from triethylamine. In order to test this hypothesis, we

Fig. 1 (a) IR spectra recorded during the photolysis of 1^+ (1.9 mM) with Et₃N (72 mM) in THF after 0, 5, 15, 25, 35 and 45 min (a trace of **2** is present at 2020 cm⁻¹). (b) IR spectroelectrochemistry of the reduction of 1^+ (THF, [NBu₄][PF₆], OTTLE cell, 293 K).

Table 1 CO stretching frequencies of complexes under study

Complex	Solvent	<i>v</i> (CO)/cm ⁻¹
1+	THF	2031, 1927br
1.	PrCN	2010, 1903, 1893
1.	THF	2011, 1907, 1893
2	THF	2020, 1920, 1897
2	THF	1998, 1888, 1868
3+	THF	2016, 1914, 1892
4+	PrCN	2038, ~1835
4.	PrCN	2010, 1903br, 1893br ^a
6+	THF	2031, 1927br
6.	THF	2010, 1905, 1892
$^{a}T = 223 \text{ K}.$		

synthesised 6^+ as an analogue without the porphyrin unit. Indeed, photolysis of complex 6^+ in THF with visible light ($\lambda > 495$ nm) in the presence of triethylamine yields no products.

The electron-transfer mechanism was also tested by cyclic voltammetry together with UV-Vis and IR spectroelectrochemical studies. UV-Vis spectra show that the reversible oxidation of 1^+ and 2 is based on the porphyrin macrocycle and occurs at the same potential as for 5 and Zn(TPP) (380 mV *vs.* Fc/Fc⁺ in THF) (Fig. 2).

Fig. 2 Cyclic voltamograms of 1^+ , 2 and 5 in THF ([NBu₄][PF₆], 300 K, scan rate 100 mV s⁻¹ and Fc/Fc⁺ as internal standard).

IR spectroelectrochemistry indicates that the reduction occurs on the rhenium bipyridine site for both 1^+ and 2 (compare spin distribution for $[Re(CO)_3(bpy)L]^0$).^{9,10} The reduction waves for 1⁺ and 2 in Fig. 2 are notably different from simple models such as 6^+ , [Re(CO)₃(bpy)Br] and from 5. For 1^+ the reduction in THF is partly chemically reversible while for the model 6^+ it is reversible. IR spectroelectrochemistry allows identification of the reduction products thanks to the extensive literature on $[\text{ReI}(\text{CO})_3(\text{bpy})\hat{L}]^n$ complexes.^{8,10–12} During reduction of 1+ in an OTTLE cell, three new IR bands grow in at 2016, 1914 and 1892 cm⁻¹ (Fig 1(b)); since they are identical to those in the IR spectra of [Re(CO)₃(bpy)(THF)]⁺ and the photoproduct (Fig. 1(a)), they are assigned to $3^{+.8}$ The radical 1. is expected at lower frequencies and reduction at low temperature (223 K) in butyronitrile gives bands at 2010, 1903 and 1893 cm⁻¹ consistent with a radical (Table 1).¹⁰ Thus reduction of 1⁺ occurs at the rhenium bipyridine site whereas reduction of 5 necessarily occurs at the porphyrin. No ligand substitution occurs without reduction; hence the radical 1[.] must be the species that undergoes substitution. Electrode potentials listed in Table 2 reveal that, at the potential where 1^{\cdot} is formed, [Re(CO)₃(bpy)(THF)] is reoxidised to the corresponding cation. The latter should be a good model for 3^{-3+} . Substitution should therefore occur catalytically [eqns. (1), (2) and (3)].

Initiation:
$$\mathbf{1}^+ \xrightarrow{e^- \text{ or } hv, Et_3N} \mathbf{1}^\bullet$$
 (1)

Substitution:
$$1^{\bullet} \xrightarrow{\text{THF}} 3^{\bullet} + 3\text{-Me-Py}$$
 (2)

Reoxidation:
$$\mathbf{3}^{\bullet} + \mathbf{1}^{+} \longrightarrow \mathbf{1}^{\bullet} + \mathbf{3}^{+} \text{ or } \mathbf{3}^{\bullet} \longrightarrow \mathbf{3}^{+} + \mathbf{e}^{-}$$
 (3)

The labile nature of the axial ligand upon reduction explains why the first reduction in the cyclic voltammogram is partly

 Table 2 Reduction potentials

Complex	Solvent	$E_{1/2}^{(I)}/V$ (vs. Fc/Fc ⁺)	Ref
1+	THF	-1.44^{a}	b
2	THF	-1.75°	b
6+	THF	-1.45	b
$[Re(CO)_3(dmb)(3-Me-Py)]^{+d}$	THF	-1.65	b
$[Re(CO)_3(bpy)(3-Me-Py)]^+$	MeCN	-1.47^{e}	11
[Re(CO) ₃ (bpy)(THF)] ⁺	THF	-1.69	8
[Re(CO) ₃ (bpy)Br]	THF	-1.83	b 8
^{<i>a</i>} Partly chemically irreversible. 4,4'-dimethyl-2,2'-bipyridine. SCE in MeCN ([Et ₄ N][ClO ₄] e	^b This wor Conversion electrolyte).	k. ^c Totally irreversible. n using Fc/Fc ⁺ = 380	d dmb = mV vs.

chemically irreversible. At room temperature in THF, the reduced species 1[•] readily undergoes ligand substitution with other nucleophiles. On reduction of 1^+ in the presence of bromide ions, the 3-Me-pyridine is displaced by bromide and the radical anion 2^{--} formed is reoxidised (Tables 1 and 2) to compound 2 quantitatively.

The rhenium-free analogue **5** is effectively photo-reduced by triethylamine to the porphyrin radical anion 5^{--} , confirming that Et₃N can transfer an electron to the excited state of this porphyrin. The driving force for intramolecular electron transfer is -0.25 eV for 1⁺ and *ca*. 0.06 eV for 2.⁺

In spite of the similarities between 1^+ and 2 noted above, there are great differences in their photochemical and electrochemical properties. Remarkably, compound 2 does not undergo photochemical reduction under the same conditions. Complex 2 is reduced at more negative potential than 1^+ (Table 2) and the cyclic voltammogram shows an irreversible reduction wave in THF (Fig. 2). Nevertheless, IR spectroelectrochemistry of 2 demonstrates that the axial ligand is displaced by THF during the reduction and subsequent reoxidation giving the cationic THF complex 3^+ . The differences between 1^+ and 2 are not yet fully understood.

In conclusion, the introduction of the porphyrin into the design of 1^+ induces substitution at a remote site as a consequence of photo-induced electron transfer. This is one of the principles of supramolecular photochemistry described by Balzani and Scandola but has not previously been observed in a porphyrin metal carbonyl supermolecule.¹

We thank Mr T. Mahabiersing and Dr A. Whitwood for help with the experiments and COST Action D14, project D14/0001/19 for funding.

Notes and references

- 1 V. Balzani and F. Scandola, *Supramolecular Photochemistry*, Ellis Horwood, Chichester, 1991.
- 2 C. J. Aspley, J. R. Lindsay Smith and R. N. Perutz, J. Chem. Soc., Dalton Trans., 1999, 2269.
- 3 R. V. Slone and J. T. Hupp, Inorg. Chem., 1997, 36, 5422.
- 4 R. V. Slone, K. D. Benkstien, S. Belanger, J. T Hupp, I. A. Guzei and A. L. Rheingold, *Coord. Chem. Rev.*, 1998, **171**, 221.
- J. L. Allwood, A. K. Burrell, D. L. Officer, S. M. Scott, K. Y. Wild and K. C. Gordon, *Chem. Commun.*, 2000, 747.
- 6 V. W. W. Yam, Chem. Commun., 2001, 789.
- 7 S. S. Sun, E. Robson, N. Dunwoody, A. S. Silva, I. M. Brinn and A. J. Lees, *Chem. Commun.*, 2000, 201.
- 8 G. J. Stor, F. Hartl, J. W. M. van Outersterp and D. J. Stufkens, Organometallics, 1995, 14, 1115.
- 9 W. Kaim and S. Kohlmann, Inorg. Chem., 1990, 29, 2909.
- 10 J. W. M. van Outersterp, F. Hartl and D. J. Stufkens, *Organometallics*, 1995, **14**, 3303.
- 11 L. Sacksteder, A. P. Zipp, E. A. Brown, J. Streich, J. N. Demas and B. A. DeGraff, *Inorg. Chem.*, 1990, **29**, 4335.
- 12 F. P. A. Johnson, M. W. George, F. Hartl and J. J. Turner, Organometallics, 1996, 15, 3374.