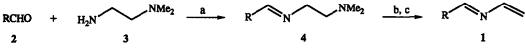
N-VINYL AND *N*-UNSUBSTITUTED β-LACTAMS FROM 1-SUBSTITUTED 2-AZA-1,3-BUTADIENES

Gunda I. Georg^{*}, Ping He, Joydeep Kant¹, and Jeffrey Mudd²

Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045-2506 U.S.A.

Abstract: The reaction of acid chlorides and N-vinyl imines results in the stereoselective formation of cis N-vinyl β -lactams. The N-vinyl protecting group can be removed either oxidatively or hydrolytically to yield N-unsubstituted β -lactams.


Some of the most versatile methods for the one-step formation of the β -lactam ring system are the enolate-imine condensation³ and the ketene-imine reaction.⁴ Both methods require the use of imines possessing N-substituents that are compatible with the respective reaction conditions and which are also easily removable after β -lactam formation.

Recently, we have introduced N-vinyl imines (2-aza-1,3-dienes) as novel precursors for the synthesis of N-(1-propenyl) and N-unsubstituted β -lactams⁵ via the ketene-imine reaction. Related studies have been reported by Paloma.⁶

N-Vinyl β -lactams were known previously, however, the vinyl group was typically introduced after β -lactam formation and the deprotection to form N-unsubstituted β -lactams usually required several steps for completion.⁷ The use of 2-aza-1,3-dienes in the ketene-imine reaction represents thus a convergent approach toward the desired N-vinyl β -lactams. Requiring only one step for the formation of the β -lactams and one step for the deprotection of the N-vinyl β lactams to form the N-unsubstituted β -lactams, the method is straightforward and can be accomplished in good yields. N-Unprotected β -lactams are important intermediates in the formation of bicyclic and monocyclic β -lactam antibiotics.⁸

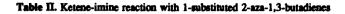
We now wish to report on novel N-ethenyl β -lactams synthesized from 1-substituted 2-aza-1,3-butadienes 1 via the acid chloride-imine reaction. We are further detailing the novel observation that the β -lactam N-vinyl group can be removed hydrolytically.

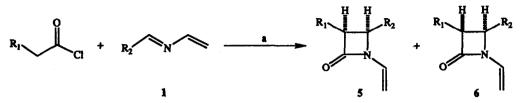
The novel 1-substituted 2-aza-1,3-butadienes 1 could be synthesized^{5,9} in good yields utilizing a procedure described by Böhme.¹⁰ Reaction of the aldehydes 2 with N,Ndimethylethylendiamine 3 gave the Schiff bases 4, which could be purified by vacuum distillation or could also be used crude in the next step of the reaction. In a one flask procedure, the imines 4 were first alkylated with iodomethane in N,N-dimethylformamide to give the intermediate ammonium iodides. The crude ammonium salts underwent Hoffmann elimination in the presence of sodium hydride to give the desired 2-aza-1,3-butadienes 1 in satisfactory yields (Table I).

(a) Ether, MgSO₄, 25°C, 1 h; (b) MeI (2 equiv), DMF, 25°C, 30 min; (c) NaH (3.5 equiv), 0°C, 12 h.

Table I. Formation of 1-substituted 2-aza-1,3-dienes

Entry	R	4	Yield (%)	1
1	Ph	83		84ª
2	РЬСН —СН	79		93 ^{6,0}
3	PhCH == CMe	80		63 *
4	PhC = C	79		69 ⁶

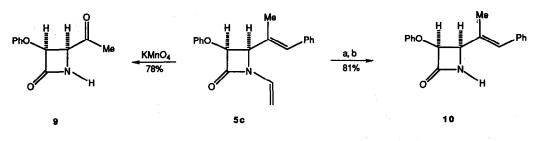

^aDistilled yields. ^bCrude yields. ^cAcetonitrile as the solvent for the conversion of 4 to 1.


The newly synthesized 2-aza-1,3-butadienes 1 were then subjected to the ketene-imine reaction conditions to generate N-vinyl β -lactams 5 and 6 with high cis stereoselectivity¹¹ and in good yields (Table II).

As previously reported, 5-7 the N-vinyl group can be removed oxidatively, for example, by treatment with potassium permanganate in an acetone/water solution. Oxidative cleavage of the β -lactam N-vinyl group of 5a under these reaction conditions resulted in the formation of the N-unprotected β -lactam 7 in 90% yield. It should be pointed out that the short reaction time (10 min) is crucial in this reaction. A longer reaction time results in a decreased yield of the N-unprotected β -lactam 7 (Scheme 1).

We also explored the possibility of an acid catalyzed hydrolysis of the N-vinyl β -lactam moiety (enamide functionality). Refluxing N-vinyl β -lactam 5a in THF/1% aq HCl (9:2) for 36 h afforded a 1:1 mixture of the N-unprotected β -lactam 7 and the N-hydroxyethyl β -lactam 8 (as a mixture of diastereoisomers). Treatment of the mixture consisting of 7 and 8 with aqueous Na₂CO₃ solution produced β -lactam 7 in an overall yield of 62%. The N-hydroxyethyl group in 8 is also cleaved upon column chromatography on silica gel.


The enamine like behavior of the N-vinyl group of the β -lactams allows now for an easy differentiation of the two double bonds, for example, in β -lactam 5c. Oxidative cleavage with potassium permanganate results, as expected, in a simultaneous oxidation of both double bonds to produce the 4-acetyl- β -lactam 9 in 78% yield. However, hydrolysis keeps the 4-vinyl group intact, and cleaves only the N-vinyl group to yield β -lactam 10 in 81% yield (Scheme 2).



(a) Triethylamine (3 equiv), dichloromethane, acid chloride (3 equiv), 25°C, 12 h.

Entry	R ₁	R ₂		5 (% yield)	6 (% yield)
1	PhO	Ph	5 a	93	3
2	PhO	PhCH CH	5b	77	-
3	Рьо	PhCH — CMe	5c	80	2
4		PhCH === CMe	5d	63	
5	PhO	Ph	5e	45	14

453

Scheme 2. Selective cleavage of the double bonds in β-lactam 5c

(a) THF/1 % aq HCi (9:2), reflux, 38 h. (b) THF/water (1:1), Na₂CO₃ (20 equiv.) reflux, 1 h.

With this letter we have demonstrated the utility of 2-aza-1,3-dienes in β -lactam chemistry and we have also shown that the N-vinyl protecting group can be removed either oxidatively or hydrolytically.

Acknowledgements: These studies were supported by a grant from the American Heart Association Kansas Affiliate, The National Institutes of Health (GM 42260), and the General Research Fund of the University of Kansas.

REFERENCES AND NOTES

- (1) Current address: Chemical Process Development, Bristol-Myers Company, Pharmaceutical Research and Development Division, P. O. Box 4755, Syracuse, New York 13221-4775.
- (2) Participant of the 1988 Summer Undergraduate Research Program at the Department of Medicinal Chemistry at the University of Kansas.
- (3) Georg, G. I.; Kant, J.; Gill, H. S. J. Am. Chem. Soc. 1987, 109, 1129 and references cited therein.
 (4) Wagle, D. R.; Garai, C.; Chiang, J.; Montelone, M. G.; Kyrus, B. E.; Strohmeyer, T. W.; Hedge, V.
- R.; Manhas, M. S.; Bose, A. K. J. Org. Chem. 1988, 53, 4227 and references cited therein.
- (5) Georg, G. I.; Kant, J.; He, P.; Ly, A. M.; Lampe, L. Tetrahedron Lett. 1988, 29, 2409.
- (6) Lasarte, J.; Palomo, C.; Picart, J. P.; Dunogues, J.; Aizpura, J. M. J. Chem. Soc., Chem. Commun. 1989, 72.
- (7) (a) Szymonifka, M. J. Heck, J. V. Tetrahedron Lett. 1989, 30, 2869. (b) Cossio, F. P.; Palomo, C. Tetrahedron Lett. 1985, 26, 4235. (c) Heck, J. V.; Christensen, B. G. Tetrahedron Lett. 1981, 22, 5027. (d) Häbich, D. Angew. Chem. Int. Ed. Engl. 1983, 22, 711.
- (8) For reviews on β-lactam chemistry see: Morin, R. B.; Gorman, M. Eds.; Chemistry and Biology of β-Lactam Antibiotics; Academic: New York, 1982; Vol. 1-3. Georg, G. I. In Studies in Natural Product Chemistry; Rahman, A., Ed.; Elsvier: Amsterdam, 1989; Vol. 4, p 431.
- (9) For a review on azadiene chemistry see: Boger, D. L. Tetrahedron 1983, 39, 2869.
- (10) Böhme, H.; Ingendoh, A. Chem. Ber. 1979, 112, 1297.
- (11) For a discussion of the mechanism of the ketene-imine reaction see: (a) Holden, G. G. In Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B.; Gorman, M., Eds.; Academic: New York, 1982; Vol. 2, Chapter 2. (b) Lynch, J. E.; Riseman, S. M.; Laswell, W. L.; Tschaen, D. M.; Volante, R.; Smith, G. B.; Shinkai, I. J. Org. Chem. 1989, 54, 3792. The cis/trans ratios in Table II represent isolated yields, obtained after column chromatography.

(Received in USA 10 November 1989)