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Abstract: An asymmetric 1,4-addition of arylboronic acids to
RCH=CHCO2Ar (Ar = Ph or 4-acetylphenyl) was carried out at 50
°C in aqueous acetone in the presence of [Pd(chiraphos)(Ph-
CN)2](SbF6)2. The reaction gave optically active b-aryl esters in up
to 98% ee. The protocol provided a simple access to an endothelin
receptor antagonist reported by SmithKline Beecham.
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Metal-catalyzed 1,4-additions of organometallic com-
pounds to a,b-unsaturated carbonyl compounds have at-
tracted much attention as methods for constructing chiral
centers via C–C bond-forming reactions. Although Rh-
based complexes have been used extensively as catalysts
for 1,4-additions of arylmetal compounds,1 palladium cat-
alysts have recently been found to be an excellent alterna-
tive.2 Palladium(II) catalysts have higher turnover
numbers than those of rhodium catalysts for cyclic and
acyclic unsaturated ketones, aldehydes and N-acylamides
with excellent enantioselectivities.3,4 However, they have
a strong tendency to undergo b-hydride elimination, giv-
ing Heck coupling products for unsaturated esters.2e,3e,5

Formation of such alkene by-products for unsaturated es-
ters has also been reported for rhodium,6 iridium,7 and ru-
thenium catalysts.8 Thus, we recently reported the
synthesis of chiral b-arylalkanoates, including total syn-
thesis of (+)-(R)-tolterodine, via stepwise palladium-cata-
lyzed 1,4-addition of arylboronic acids to enones and
regioselective Baeyer–Villiger oxidation.4f In this paper,
we report that aryl esters (1, R2 = Ph, 4-AcC6H4) selective-
ly afford 1,4-addition products 4 of arylboronic acids in
the presence of the dicationic palladium catalyst
[Pd((S,S)-chiraphos)(PhCN)2](SbF6)2 [(S,S)-3], whereas
the corresponding alkyl esters such as 1 (R2 = Me) result
in Heck coupling (4¢; Scheme 1). The protocol provides a
simple access to an optically active endothelin receptor
antagonist reported by SmithKline Beecham.

This 1,4-addition and the Heck reaction may involve a
common C-enolate intermediate generated by insertion of
an alkene into the C–Pd bond (Scheme 2). The C-enolate

which undergoes Heck coupling (4¢) is in equilibrium with
O-enolate susceptible to hydrolysis by water to produce
1,4-addition products 4.9 For smooth formation of such O-
enolates in aqueous solvents, cationic palladium(II) com-
plexes are better catalysts than neutral complexes, and un-
saturated ketones and aldehydes are better substrates than
esters and amides.

We recently succeeded in using palladium catalysts for
1,4-addition to electron-deficient amides such as
RCH=CHCON(Ph)COPh.4h Although simple extension
of this protocol for acid anhydrides PhCH=CHCO2COR3

(R3 = Ph, t-Bu, NMe2, Ot-Bu) failed due to rapid hydroly-
sis of these substrates with water, aryl esters (1, R2 = Ph,
4-AcC6H4) selectively provided 1,4-addition products.
The effects of ester groups and stoichiometry of arylbo-

Scheme 1 Asymmetric 1,4-addition of ArB(OH)2 to a,b-unsatura-
ted esters
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ronic acids at 50 °C in aqueous acetone (10:1) are shown
in Table 1. The Heck product was the major product for
methyl ester (entry 1), but the reaction provided the 1,4-
addition product with 92% selectivity for phenyl ester (en-
try 2) and with more than 98% selectivity for 4-acetylphe-
nyl ester (entry 3). Other ester derivatives such as C6F5, 4-
MeOC6H4, 4-CF3C6H4, 4-PhCOC6H4, and 4-CNC6H4 es-
ters (R2 of 1) were less effective. The yields were very low
when 1.5 equivalents of boronic acid were used (entry 3),
but they were increased to practical levels (70–80%) in
the presence of 3–4 equivalents of boronic acid (entries 4
and 5).

Results of enantioselective 1,4-additions of arylboronic
acids (3 equiv) to the representative a,b-unsaturated esters
are shown in Table 2. All reactions selectively gave 1,4-
addition products with concomitant formation of less than
2% of Heck product. Although rhodium-catalyzed reac-
tions of electron-deficient arylboronic acids resulted in

Table 1 Reaction Conditionsa

Entry R2 of 1 
(R1 = Ph) 

4-MeC6H4B(OH)2 
(equiv)

Yield 
(%)b

4:4¢

1 Me 1.5 7 20:80

2 Ph 1.5 48 92:8

3 4-AcC6H4 1.5 51 98:<2

4 4-AcC6H4 3.0 71 98:<2

5 4-AcC6H4 4.0 80 98:<2

a A mixture of unsaturated ester (0.5 mmol), 4-MeC6H4B(OH)2 and 
Pd catalyst 3 (1 mol%) in acetone–H2O (2 mL/0.2 mL) was stirred at 
50 °C for 20 h.
b NMR yields.

Table 2 Synthesis of Chiral b-Aryl Estersa,13

Entry R1 R2 Ar of ArB(OH)2 Product Yield (%)b ee (%)

1 Ph 4-AcC6H4 4-MeC6H4 4a (71) 97 (S)

2 Ph 4-AcC6H4 3-MeC6H4 4b (81) 95

3 Ph 4-AcC6H4 3-MeOC6H4 4c (90) 97

4 Ph 4-AcC6H4 3-MeO2CC6H4 4d 89 95

5 Ph 4-AcC6H4 4-ClC6H4 4e (88) 97

6 Ph 4-AcC6H4 3-MeCOC6H4 4f (99) 96

7 Ph 4-AcC6H4 4-MeOC6H4 4g 99 96c

8 2-MeOC6H4 4-AcC6H4 Ph 4h (80) 97

9 3-MeOC6H4 4-AcC6H4 Ph 4i (80) 97

10 4-MeOC6H4 4-AcC6H4 Ph 4j (71) 95

11 4-MeOC6H4 4-AcC6H4 3-MeCOC6H4 4k 87 95

12 2,3-(MeO)2C6H3 4-AcC6H4 Ph 4l (86) 97

13 Me 4-AcC6H4 3-MeCOC6H4 4m 80 90

14d,e Me 4-AcC6H4 3-MeOC6H4 4n 78 92

15 n-Pr 4-AcC6H4 3-MeCOC6H4 4o 69 84

16d n-Pr Ph 3-MeCOC6H4 4p 80 90

17 Me(CH2)3CH2 4-AcC6H4 3-MeCOC6H4 4q 88 88

18d,f Me(CH2)3CH2 Ph 3-MeCOC6H4 4r 80 91

19 i-Pr 4-AcC6H4 3-MeCOC6H4 4s 60 88

20d,f i-Pr Ph 3-MeCOC6H4 4t 90 90

a A mixture of unsaturated ester (0.5 mmol), ArB(OH)2 (1.5 mmol) and Pd catalyst (1 mol%) in acetone–H2O (2 mL/0.2 mL) was stirred at 50 
°C for 20 h.
b Isolated yields of 4. NMR yields are in parentheses.
c The product was converted into ethyl ester for analysis of enantioselectivity.
d The reaction was carried out at 35 °C for 20 h.
e The reaction was carried out in THF–H2O (10:1).
f A higher amount of Pd catalyst (5 mol%) was used.
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low yields due to their slow insertion into Ar–Rh bond,
both boronic acids possessing an electron-withdrawing
group and those possessing an electron-donating group af-
forded good yields of products with excellent enantio-
selectivities in a range of 95–97% ee (entries 1–7).
Substrates having alkoxy substituents in the b-aryl ring
also resulted in high selectivities (95–97% ee, entries 8–
12). It was interesting to note that aliphatic substrates hav-
ing an alkyl substituent at the b-carbon gave selectivities
higher than 90% ee (entries 13–20), which are clearly
higher than those in the case of analogous reactions with
aliphatic ketones, which resulted in 78–89% ee for n-pen-
tyl, isopropyl and cyclohexyl b-substituents at –15 °C.4c

For these reactions of aliphatic substrates, phenyl esters
(entries 16, 18 and 20) resulted in yields and selectivities
comparable to those of 4-acetylphenyl ester (entries 13,
14, 15, 17 and 19). Addition of 4-methylphenylboronic
acid to 4-acetylphenyl cinnamate afforded S product (en-
try 1). The absolute configuration was determined by re-
ported specific rotation of the corresponding methyl ester
{[a]D –2.7°, (CHCl3)} after conversion of 4a into methyl
ester {[a]D +2.4° (CHCl3)}.10

Selective antagonists of endothelin receptors are currently
being evaluated as potential therapeutic agents for the
treatment of hypertension, congestive heart failure and re-
nal diseases. 1,3-Diarylindan-2-caraboxylic acid deriva-
tives are highly potent antagonists selective for endothelin
receptors. We recently reported the synthesis of two an-
tagonists reported by SmithKline Beecham (Scheme 3)11

and Merck–Banyu12 by the rhodium-catalyzed 1,4-addi-
tion to build the first stereogenic center in a five-mem-
bered ring of 10. Although a rhodium–chiraphos catalyst
achieved 89% ee,4j this selectivity can be improved by us-
ing the corresponding palladium–chiraphos catalyst. Pal-
ladium catalysts are also advantageous for accessing an
indene intermediate (9) in one step from 8 by a tandem
1,4-addition–aldol cyclization protocol recently devel-
oped by our group.4i b-(2-Benzoylphenyl) a,b-unsaturat-
ed ester 5 produced optically active indenes 6 via
sequential 1,4-addition–aldol condensation (Table 3).
Representative boronic acids afforded good yields of aryl-
indenes with excellent enantioselectivities in the range of
88–98% ee. Indeed, the palladium–(R,R)-chiraphos cata-
lyst (R,R)-3 directly provided 9 in the absence of an acid

Scheme 3 SmithKline Beecham’s endothelin receptor antagonists
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co-catalyst, which was previously used for accelerating
1,4-addition and final dehydration.4i After hydrogenation
of the double bond in 9 to yield 10, the enantiomeric ex-
cess was determined by HPLC {88%, 95% ee; [a]D –94°
(CHCl3)}. The total yield of 10 starting from 7 was 38%
(Scheme 3). Compound 10 was led to the desired antago-
nist by epimerization and hydrolysis of the ester group by
a known method.4j,11
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