This article was downloaded by: [Fresno Pacific University] On: 21 December 2014, At: 04:57 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Bioscience, Biotechnology, and Biochemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tbbb20</u>

Stereoselective Total Synthesis of Tri- and Tetrahexoside Wheat Flour Ceramide

Katsuya Koike^a, Masato Mori^{ab}, Yukishige Ito^{ab}, Yoshiaki Nakahara^{ab} & Tomoya Ogawa^{ab} ^a College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274, Japan

^b The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan

Published online: 12 Jun 2014.

To cite this article: Katsuya Koike, Masato Mori, Yukishige Ito, Yoshiaki Nakahara & Tomoya Ogawa (1993) Stereoselective Total Synthesis of Tri- and Tetrahexoside Wheat Flour Ceramide, Bioscience, Biotechnology, and Biochemistry, 57:5, 698-702, DOI: <u>10.1271/bbb.57.698</u>

To link to this article: <u>http://dx.doi.org/10.1271/bbb.57.698</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Stereoselective Total Synthesis of Tri- and Tetrahexoside Wheat Flour Ceramide

Katsuya KOIKE,[†] Masato MORI,* Yukishige ITO,* Yoshiaki NAKAHARA,* and Tomoya OGAWA*

College of Pharmacy, Nihon University, 7–7–1 Narashinodai, Funabashi-shi, Chiba 274, Japan * The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351–01, Japan Received September 21, 1992

The wheat glycosphingolipids, $O-(\beta$ -D-mannopyranosyl- $[(1 \rightarrow 4)-O-(\beta$ -D-mannopyranosyl)]_n-O-(\beta-D-glucopyranosyl)- $(1 \rightarrow 1)-(2S,3S,4R)$ -4-hydroxy-N-tetracosanoylsphinganine (n = 1 and 2), were stereoselectively synthesized. Silver silicate promoted glycosylation when 4-O-acetyl-2,3,6-tri-O-benzyl- α -D-mannopyranosyl bromide was used for elongating the glycan chains, which were latter coupled with the ceramide derivative by the trichloroacetimidate method.

Since our successful synthesis¹⁾ of the ceramide, dihexoside 1, a prototype molecule for the D-mannose-containing wheat flour glycosphinogolipids, 2^{-6} our attention has been directed toward the development of a synthetic route to the multi-mannosylated molecules of this class. It is noteworthy that all the hexose residues (D-glucose and D-mannose) reported for wheat flour, wheat grain, and rice grain glycosphingolipids appear to be linked uniformly in β -1 \rightarrow 4 fashion with each other, while the structures of the component ceramides are diverse in terms of their composition of fatty acids as well as the long-chain bases (sphinganine derivatives).^{2–8)}

The preferential formation of a β -D-mannopyranosidic linkage has rarely been achieved, in spite of the accumu-

[†] To whom inquiries should be addressed.

Abbreviations: DMF, N,N-dimethylformamide; DBU, 1,8-diazabicyclo[5,4,0]-7-undecene; $BF_3 \cdot Et_2O$, boron trifluoride etherate; THF, tetrahydrofuran; DMAP, 4-dimethylaminopyridine.

lation of new techniques for glycosylation. The reaction with α -bromides as glycosyl donors in the presence of a heterogeneous promotor such as silver silicate has been the

only effective way so far to achieve direct mannosylation in favor of β -D-linkage formation.^{9,10)} As described previously for the synthesis of 1, we observed fairly good

selectivity $(\beta/\alpha = 1.9)$ in the formation of the disaccharide, β -D-Man- $(1\rightarrow 4)$ -D-Glc, using silver silicate. The same promotor would also be useful to produce β -D-Man- $(1\rightarrow 4)$ -D-Man linkages present in the highly glycosylated plant sphingolipids.

This paper details the synthesis of ceramide tri- (2) and tetrahexosides (3) containing two and three D-mannose residues, respectively.¹¹⁾

Results and Discussion

Disaccharide 5 is a suitably protected key intermediate for the synthesis of 1, 2, and 3. In the previous work¹⁾ on ceramide dihexoside 1, we converted 5 into hepta-Oacetylated dihexosyl trichloroacetimidate and condensed it with ceramide derivative 4.¹²⁾

For the synthesis of 2 and 3, elongation of the saccharide chains with 5 was necessary. Deacetylation of 5 gave disaccharide glycosyl acceptor 6, which was allowed to react with 4-O-acetyl-2,3,6-tri-O-benzyl-a-D-mannopyranosyl bromide $(7)^{1}$ in the presence of silver silicate and 4A molecular sieves in dichloromethane to afford a mixture of trisaccharides 8 and 9 in 15 and 54% yields, respectively. The structures of 8 and 9 were assigned from ¹H- and ¹³C-NMR data. Minor product 8 exhibited the characteristic signals for an α -D configuration, a signal for H-1c at δ 5.32 ppm with a coupling constant of 1.7 Hz, and a signal for C-1c at δ 99.9 ppm with a ${}^{1}J_{CH}$ value of 170.9 Hz, while isomer 9 had three signals for anomeric carbons with β -D configuration at δ 101.0 ppm (¹J_{CH} 155.0 Hz), 101.3 ppm $({}^{1}J_{CH} 155.0 \text{ Hz})$ and 102.5 ppm $({}^{1}J_{CH} 157.5 \text{ Hz})$. ¹³⁾ For preparation of the tetrasaccharide, β -isomer 9 was deacetylated to 10 and then glycosylated with 7 under the same condition as those already mentioned to produce a mixture of 14 and 15 in a 69% yield. The reaction, however, did not proceed in favor of β -glycoside formation, and desired 15 was isolated in a 17% yield. The stereochemistry of compounds 14 and 15 was again elucidated by ¹³C-NMR data.

With the tri- and tetrasaccharide fragments at hand, their conversion to the glycosyl donors for coupling with 4 was next examined.

Hydrogenolysis of 9 with 10% Pd–C in MeOH–THF– H₂O–HCO₂H and subsequent acetylation afforded a mixture of α and β anomers of peracetate 11 in a ratio of 1.2:1 and a 85% overall yield. The mixture 11 was chemoselectively deacetylated with hydrazinium acetate¹⁴) in N, N-dimethylformamide (DMF) to give a 66% yield of hemiacetal 12, which, after treating with trichloroacetonitrile and 1,8-diazabicyclo[5,4,0]-7-undecene (DBU),¹⁵) was converted to α -D-trichloroacetimidate 13 in a 95% yield.

Similarly, tetrasaccharide 15 was transformed into corresponding trichloroacetimidate 18 by sequential hydrogenolysis, acetylation, selective deacetylation, and trichloroacetimidation in a 49% overall yield.

Crucial glycosylation¹⁶⁾ of ceramide derivative 4 with 13 and 18 was carried out by using boron trifluoride etherate (BF₃·Et₂O) as the promotor in dichloromethane, and fully protected ceramide tri- and tetrahexosides, 19 and 20 were stereoselectively produced in 39 and 20% yields, respectively. The ¹³C-NMR spectrum of 19 contained three signals for anomeric carbons of β -D configuration at δ 97.5 ppm (¹J_{CH} 159.9 Hz), 97.8 ppm (¹J_{CH} 159.9 Hz), and 100.3 ppm (${}^{1}J_{CH}$ 162.4 Hz). The stereochemistry of the newly formed glycosidic linkage was also assignable from the 1 H-NMR data, in which an anomeric proton (H-1a) signal was split with a coupling constant of 7.8 Hz at δ 4.37 ppm. Analogously, the 1 H-NMR spectrum of 20 containing a doublet signal for H-1a at δ 4.36 ppm with J 7.8 Hz proved the β -D configuration of the D-glucose residue.

Compounds 19 and 20 thus obtained were deprotected with sodium methoxide (NaOCH₃) in methanol to complete the total synthesis of glycosphingolipids 2 and 3. The structures of the synthetic compounds were evident from the unambiguous synthetic route and was confirmed by the ¹H-NMR data depicted in Fig.

In conclusion, we succeeded in the first total synthesis of unique D-mannose-containing glycosphingolipids 2 and 3 which represent the tri- and tetrahexosyl members of the wheat flour glycosphingolipid family.

Experimental

General. Optical rotation values ($[\alpha]_D$) were measured with a Perkin-Elmer Model 241 MC polarimeter as a solution in CHCl₃ at 25°C, unless noted otherwise. Column chromatography was carried out in columns of silica gel (Merck, 70–230 mesh), and flash chromatography was done in columns of Wako gel C-300 (200–300 mesh). TLC and high-performance TLC were conducted on 60F₂₅₄ silica gel (Merck, Darmstadt). 4A and AW300 molecular sieves were purchased from Nakarai Chemicals and Union Showa, respectively. NMR spectra were recorded with a JNM-GX400, JNM-FX100FT, or JNM-FX90Q NMR spectrometer as a solution in CDCl₃, unless noted otherwise. The values for δ_C and δ_H are expressed in ppm downwards from the signal for internal Me₄Si.

Benzyl O-(2,3,6-tri-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-Obenzyl- β -D-glucopyranoside (6). To a solution of compound 5¹¹ (708 mg, 697 μ mol) in MeOH-tetrahydrofuran (THF; 1:1, 20 ml) was added 0.1 N NaOCH₃ in MeOH (70 μ l), and the mixture was stirred for 16 h at room temperature. The mixture was neutralized with Amberlist 15 (H⁺ form) and filtered through Celite, before the filtrate was evaporated *in vacuo*. Chromatography of the residue (SiO₂, AcOEt-*n*-hexane=1:3) gave compound 6 (558 mg, 82%), $[\alpha]_D$ -41.5° (*c*=0.50), *R*_f 0.17 developed with AcOEt-*n*-hexane=3:7. NMR data: δ_H 4.50 (1H, d, *J*=7.6 Hz, H-1a), 4.49 (1H, br. s, H-1b), 3.95 (1H, t, *J*=9.3 Hz, H-4a), 3.95 (1H, t, *J*=9.3 Hz, H-4b), 3.71 (1H, d, *J*=2.4 Hz, H-2b), 3.22 (1H, dt, *J*=5.4 and 9.3 Hz, H-5b), and 3.13 (1H, dd, *J*=2.7 and 9.3 Hz, H-3b): δ_c 102.5 (*J*=156.0 Hz, C-1a) and 100.5 (*J*=156.3 Hz, C-1b).

Anal. Found: C, 75.29; H, 6.51%. Calcd. for $C_{61}H_{64}O_{11}$: C, 75.29; H, 6.63%.

Benzyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 4)- $O-(2,3,6-tri-O-benzyl-\beta-D-mannopyranosyl)-(1\rightarrow 4)-2,3,6-tri-O-benzyl-\beta-D$ glucopyranoside (8) and benzyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- β -Dmannopyranosyl)- $(1 \rightarrow 4)$ -O-(2,3,6-tri-O-benzyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (9). To a mixture of compound 6 (584 mg, 600 μ mol), silver silicate (1 g) and 4A molecular sieves (1 g) in dichloromethane (2 ml) was added dropwise a solution of bromide 7, which had been freshly prepared from p-nitrophenyl 4-O-acetyl-2,3,6tri-O-benzyl-D-mannopyranoside (770 mg, 1.20 mmol) and HBr,¹⁾ in dichloromethane (1.5 ml) at -50° C. The mixture was stirred at -50° C up to room temperature for 16h. The mixture was diluted with AcOEt (100 ml) and filtered through Celite. The filrate was successively washed with aq. 5% NaHCO3, water, and satd. brine, dried (MgSO4), and evaporated in vacuo. Purification of the product was performed by medium-pressure chromatography with LICHROPREP Si60 size C in AcOEt-toluene = 1:10 to give compound 8 (131 mg, 15%) and compound 9 (466 mg, 54%).

Compound 8. $[\alpha]_D - 18.5^\circ$ (c = 0.54), $R_f 0.22$ developed with AcOEttoluene = 1 : 10. NMR data: $\delta_H 5.36$ (1H, t, J = 9.5 Hz, H-4c), 5.32 (1H, d, J = 1.7 Hz, H-1c), 4.50 (1H, d, J = 7.8 Hz, H-1a), 4.48 (1H, br.s, H-1b), 3.99 (1H, t, J = 9.0 Hz, H-4a), 3.96 (1H, t, J = 8.8 Hz, H-4b), 3.27–3.32 (1H, m, H-5b), 3.17 (1H, dd, J=2.9 and 9.5 Hz, H-3b), and 1.89 (3H, s, OAc); δ_c 169.7 (CO), 102.5 (J=157.5 Hz, C-1a), 100.2 (J=155.0 Hz, C-1b), 99.9 (J=170.9 Hz, C-1c), and 20.9 (OCOCH₃).

Anal. Found: C, 73.66; H, 6.42%. Calcd. for C₉₀H₉₄O₁₇ · H₂O: C, 73.75; H, 6.60%.

Compound 9. $[\alpha]_{\rm D}$ -38.0° (c=0.63), $R_{\rm f}$ 0.11 developed with AcOEttoluene=1:10. NMR data: $\delta_{\rm H}$ 5.23 (1H, t, J=9.8 Hz, H-4c), 4.54 (1H, br.s, H-1c), 4.51 (1H, br.s, H-1b), 4.48 (1H, d, J=7.8 Hz, H-1a), 4.20 (1H, t, J=9.4 Hz, H-4b), 3.91 (1H, t, J=9.3 Hz, H-4a), 3.74 (1H, d, J= 2.7 Hz, H-2c), and 3.60 (1H, t, J=9.0 Hz, H-3a); $\delta_{\rm C}$ 169.9 (CO), 102.5 (J=157.5 Hz, C-1a), 101.3, 101.0 (J=155.0 Hz, C-1b and C-1c), and 21.0 (OCOQCH₃).

Anal. Found: C, 73.77; H, 6.47%. Calcd. for $C_{90}H_{94}O_{17}$; H₂O: C, 73.75; H, 6.60%.

Benzyl O-(2,3,6-tri-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-gluco-pyranoside (10). Compound 9 (230 mg, 159 μ mol) was treated in the same way as that described for compound 6. Chromatography of the product in AcOEt-*n*-hexane = 3 : 7 gave compound 10 (214 mg, 95%), [α]_D - 47.5° (c = 0.59), R_f 0.19 developed with AcOEt-*n*-hexane = 3 : 7. NMR data: δ_H 4.53 (2H, br. s, H-1b and H-1c), 4.49 (1H, d, J = 7.8 Hz, H-1a), 4.18 (1H, t, J = 9.0 Hz, H-4b), 3.94 (1H, t, J = 9.3 Hz, H-4a), 3.91 (1H, t, J = 9.3 Hz, H-4c), 3.38–3.43 (1H, m, H-5a), 3.32 (1H, dd, J = 2.9 and 9.0 Hz, H-3b), 3.24–3.29 (1H, m, H-5b), 3.18–3.23 (1H, m, H-5c) and 3.13 (1H, dd, J = 2.7 and 9.3 Hz, H-3c); δ_C 102.4 (J = 158.7 Hz, C-1a), 101.5, and 100.8 (J = 155.0 Hz, C-1b and C-1c).

Anal. Found: C, 72.95; H, 6.38%. Calcd. for C₈₈H₉₂O₁₇·3/2H₂O: C, 72.96; H, 6.61%.

O-(2,3,4,6-Tetra-O-acetyl- β -D-mannopyranosyl)- $(1 \rightarrow 4)$ -O-(2,3,6-tri-O-acetyl- β -D-mannopyranosyl)- $(1 \rightarrow 4)$ -1,2,3,6-tetra-O-acetyl-D-glucopyranose (11). To a mixture of compound 9 (158 mg, 109 μ mol) and 10% Pd-C (150 mg) in H₂O-MeOH-THF (1:4:4, 10 ml) was added HCO₂H (0.5 ml), before stirring for 1 h at 50°C under an atmosphere of N₂. The mixture was filtered through Celite, and the filtrate was evaporated *in vacuo*. To a solution of the residue in pyridine (5 ml) was added a catalytic amount of 4-dimethylaminopyridine (DMAP) and Ac₂O (5 ml), and the mixture was stirred for 16 h at room temperature. The mixture was evaporated *in vacuo*, and chromatography of the residue (SiO₂, THF-*n*-hexane=2:3) gave compound 11 (90 mg, 85%), R_f 0.41 developed with *n*-hexane-THF=1:1. NMR data: δ_C 97.7, 97.4 (J=159.9 Hz, C-1b and C-1c), 91.5 (J=168.4 Hz, C-1a β), and 88.8 (J=177.0 Hz, C-1a α).

Anal. Found: C, 52.39; H, 6.03%. Calcd. for $C_{40}H_{54}O_{27} \cdot 3/4C_6H_5CH_3$: C, 52.46; H, 5.84%.

O-(2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-D-glucopyranose (12). A mixture of compound 11 (106 mg, 110 µmol) and hydrazinium acetate¹⁴⁾ (12 mg, 130 µmol) in DMF (1 ml) was stirred for 1 h at room temperature. The mixture was diluted with AcOEt (50 ml), successively washed with water and satd. brine, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue (SiO₂, THF–n-hexane=9:11) gave compound 12 (67 mg, 66%), R_f 0.23 developed with *n*-hexane-THF=1:1. NMR data: δ_C 97.8, 97.2 (J=159.9 Hz, C-1b and C-1c), 95.3 (J=167.2 Hz, C-1aβ), and 90.0 (J=173.3 Hz, C-1aα).

Anal. Found: C, 50.41; H, 5.81%. Calcd. for $C_{38}H_{52}O_{26} \cdot 1/2C_4H_8O$: C, 50.00; H, 5.87%.

O-(2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl trichloroacetimidate (13). To a mixture of compound 12 (72 mg, 78 µmol) and trichloroacetonitrile (155 µl, 1.54 mmol) in dichloromethane (1 ml) was added DBU (12 µl, 80 µmol) at 0°C, and the mixture was stirred for 2 h at 0°C. The mixture was chromatographed (SiO₂, THF-*n*-hexane=9:11) to give compound 13 (79 mg, 95%), R_f 0.39 developed with *n*-hexane-THF=1:1. NMR data: δ_H 8.65 (1H, s, NH), 6.49 (1H, d, J=3.7 Hz, H-1a), 5.55 (1H, t, J=9.8 Hz, H-4c), 5.41 (1H, d, J=2.4 Hz, H-2c), 5.35 (1H, d, J=2.7 Hz, H-2b), 5.20 (1H, t, J=9.8 Hz, H-3a), 5.11 (1H, dd, J=3.4 and 9.8 Hz, H-3b), 4.69, 4.71 (1H×2, br. s×2, H-1b and H-1c), 3.93 (1H, t, J=9.3 Hz, H-4a), 3.90 (1H, t, J=9.5 Hz, H-4b), 2.17, 2.16, 2.13, 2.11, 2.09, 2.08, 2.01, and 1.99 (3H×8, s×8, OAc×8), and 2.05 (6H, s, OAc×2).

Benzyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 4)- $O-(2,3,6-tri-O-benzyl-\beta-D-mannopyranosyl)-(1\rightarrow 4)-O-(2,3,6-tri-O-benzyl \beta$ -D-mannopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (14) and benzyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)- $O-(2,3,6-tri-O-benzyl-\beta-D-mannopyranosyl)-(1\rightarrow 4)-O-(2,3,6-tri-O-benzyl-\beta-D-mannopyranosyl)-(1\rightarrow 4)-O-(2,3,6-tri-O-benzyl-\beta-D-mannopyranosyl-benzyl-b$ $benzyl-\beta$ -D-mannopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (15). To a mixture of compound 10 (223 mg, 157 μ mol), silver silicate (500 mg) and 4A molecular sieves (500 mg) in dichloromethane (1.5 ml) was added dropwise crude bromide 7, which had been freshly prepared from the corresponding *p*-nitrobenzoate (305 mg, 476 μ mol), as described for compound 9, in dichloromethane (1 ml) at -50° C. The mixture was stirred at -50° C up to room temperature for 16 h, before being diluted with AcOEt (50 ml) and filtered through Celite. The filtrate was successively washed with aq. 5% NaHCO₃, water and satd. brine, dried (MgSO₄), and evaporated in vacuo. Chromatography of the residue (SiO₂ AcOEttoluene = 1:9) gave compound 14 (154 mg, 52%), compound 15 (50 mg, 17%), and unconverted compound 10 (38 mg).

Compound 14. $[\alpha]_D - 44.2^\circ$ (c=0.66), $R_f 0.17$ developed with AcOEttoluene = 1:9. NMR data: $\delta_H 5.34$ (1H, t, J=9.5 Hz, H-4d), and 5.31 (1H, d, J=1.7 Hz, H-1d); δ_C 169.7 (C=O), 99.6 (J=170.9 Hz, C-1d), 97.3 (J=159.9 Hz, C-1a, C-1b, and C-1c), and 20.6 (OAc).

Anal. Found: C, 72.61; H, 6.33%. Calcd. for $C_{117}H_{122}O_{22} \cdot 3H_2O$: C, 72.65; H, 6.67%.

Compound 15. $[\alpha]_D + 2.9^{\circ}$ (c=0.53), R_f 0.08 developed with AcOEttoluene=1:9. NMR data: δ_H 5.23 (1H, t, J=9.8 Hz, H-4d), 4.49, 4.50 4.55 (1H×3, br.s×3, H-1b, H-1c, and H-1d), 4.49 (1H, d, J=7.6 Hz, H-1a), 3.92 (1H, t, J=9.5 Hz, H-4a), 3.68, 3.69, 3.75 (1H×3, d×3, J=3.2 Hz, H-2b, H-2c, and H-2d), 3.62 (1H, t, J=8.8 Hz, H-3a), and 1.85 (3H, s, OAc); δ_C 169.9 (CO), 102.5 (J=161.1 Hz, C-1a), 101.6, 101.2 (J=156.3 Hz, C-1b, C-1c or C-1d), 100.9 (J=159.9 Hz, C-1b, C-1c or C-1d), and 21.0 (OCOCH₃).

Anal. Found: C, 70.37; H, 6.55%. Calcd. for $C_{117}H_{122}O_{22}$ · 6H₂O: C, 70.68; H, 6.79%.

O-(2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-1,2,3,6-tetra-O-acetyl-D-glucopyranose (16). Compound 15 (46 mg, 24 µmol) was hydrogenated and acetylated as described for compound 11 to give compound 16 (24 mg, 79%), $R_{\rm f}$ 0.32 developed with *n*-hexane-THF=1:1. NMR data: $\delta_{\rm C}$ 97.8, 97.3, and 97.1 (J=158.7 Hz, C-1b, C-1c, and C-1d), 91.5 (J=170.0 Hz, C-1aβ), and 88.8 (J=177.0 Hz, C-1aα).

Anal. Found: C, 51.88; H, 5.73%. Calcd. for $C_{52}H_{70}O_{35} \cdot 2C_4H_8O$: C, 51.50; H, 6.20%.

 $O-(2,3,4,6-Tetra-O-acetyl-\beta-D-mannopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-Acetyl-\beta-D-mannopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-acetyl-\beta-D-mannopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-acetyl-D-glucopyranose (17). Compound 16 (24 mg, 19 µmol) was treated with hydrazinium acetate (2 mg, 22 µmol) as described for compound 12. Chromatography of the product in$ *n* $-hexane-THF = 1 : 1 gave compound 17 (15 mg, 65%), <math>R_f$ 0.16 developed with *n*-hexane-THF = 1 : 1.

Anal. Found: C, 54.01; H, 6.41%. Calcd. for $C_{50}H_{68}O_{34} \cdot 2C_6H_{14}$: C, 53.75; H, 6.98%.

O-(2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-2,3-6-tri-O-acetyl-α-D-glucopyranosyl trichloro-acetimidate (18). Compound 17 (14 mg, 12 µmol) was transformed, as described for compound 13, into compound 18 (15 mg, 96%), $R_{\rm f}$ 0.27 developed with *n*-hexane-THF=1:1. NMR data: $\delta_{\rm H}$ 8.65 (1H, s, NH), 6.49 (1H, d, J=3.7 Hz, H-1a), 5.54 (1H, t, J=9.8 Hz, H-4d), 5.34, 5.35, 5.41 (1H×3, d×3, J=3.4 Hz, H-2b, H-2c, and H-2d), 5.21 (1H, t, J=9.8 Hz, H-3a), 4.72 (1H, br. s, H-1b, or H-1c, or H-1d), 4.67 (2H, br. s, H-1b, or H-1c, or H-1b), 3.52–3.70 (3H, m, H-5b, H-5c, and H-5d), 2.16, 2.15, 2.13, 2.11, 2.11, 2.09, 2.07, 2.02, 2.00, and 1.99 (3H×10, s×10, OAc×10), and 2.05 (9H, s, OAc×3).

 $O-(2,3,4,6-Tetra-O-acetyl-\beta-D-mannopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-acetyl-\beta-D-mannopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-acetyl-\beta-D-gluco-pyranosyl)-(1 \rightarrow 1)-(2S,3S,4R)-3,4-di-O-benzoyl-N-tetracosanoyl-sphinganine (19). To a mixture of compound 13 (79 mg, 74 <math>\mu$ mol), compound 4 (77 mg, 88 μ mol) and AW300 molecular sieves (300 mg) in

Downloaded by [Fresno Pacific University] at 04:57 21 December 2014

dichloromethane (0.7 ml) was added 10% BF₃·Et₂O in dichloromethane (208 μ l, 166 μ mol) under an atmosphere of Ar, and the mixture was stirred for 16 h at room temperature. The mixture was diluted with AcOEt (50 ml) and filtered through Celite. The filtrate was successively washed with aq. 5% NaHCO₃, water, and satd. brine, dried (MgSO₄), and evaporated in vacuo. Chromatography of the residue (SiO₂, THF-*n*-hexane = 7:13) gave compound 19 (52 mg, 39%) and unconverted compound 4 (49 mg), $[\alpha]_D$ -6.6° (c = 1.1), R_f 0.27 developed with THF-*n*-hexane = 2:3. NMR data: $\delta_{\rm H}$ 7.40–8.02 (10H, m, aromatic-H), 6.22 (1H, d, J=9.0 Hz, NH), 5.57 (1H, dd, J=3.4 and 8.6 Hz, H-3Cer), 5.40 (1H, d, J=2.5 Hz, H-2c), 5.34 (1H, dt, J=3.5 and 9.5 Hz, H-4Cer), 5.29 (1H, d, J=3.0 Hz, H-2b), 5.20 $(1H, t, J=10.0 \text{ Hz}, \text{ H-4c}), 5.08 (1H, t, J=9.5 \text{ Hz}, \text{ H-3a}), 5.05 (1H, dd, J=10.0 \text{ Hz}), 5.05 (1H, dd, J=10.0 \text$ J=3.2 and 9.8 Hz, H-3b), 5.00 (1H, dd, J=3, 4 and 10.0 Hz, H-3c), 4.80 (1H, dd, J=7.8 and 9.5 Hz, H-2a), 4.69 (1H, br.s, H-1c), 4.57 (1H, ddt, J=3.7, 8.5 and 12.0 Hz, H-2Cer), 4.54 (1H, br.s, H-1b), 4.37 (1H, d, J=7.8 Hz, H-1a), 4.29 (1H, dd, J=6.1 and 12.7 Hz, H-6c), 4.27 (1H, dd, J=3.7 and 7.5 Hz, H-6b), 4.13 (1H, dd, J=2.2 and 12.4 Hz, H-6a), 3.72 (1H, t, J=9.5 Hz, H-4a), 3.68 (1H, dd, J=3.9 and 10.6 Hz, H'-1Cer), 3.58-3.63 (1H, m, H-5c), 3.50-3.55 (1H, m, H-5b), 3.44-3.48 (1H, m, H-5a), 2.16, 2.12, 2.11, 2.08, 2.05, 2.03, 2.02, 1.99, 1.97, and 1.95 (3H × 10, $s \times 10$, OAc $\times 10$), 0.88 (3H, t, J = 7.1 Hz, CH₂CH₃), and 0.87 (3H, t, J=7.1 Hz, CH₂CH₃); $\delta_{\rm C}$ 100.3 (J=162.4 Hz, C-1a), 97.8, and 97.5 (J = 159.9 Hz, C-1b and C-1c).

Anal. Found: C, 62.47; H, 7.80; N, 0.78%. Calcd. for $C_{94}H_{143}NO_{31}$ · H_2O : C, 62.68; H, 8.11; N, 0.78%.

 $O-(\beta-D-Mannopyranosyl)-(1\rightarrow 4)-O-(\beta-D-mannopyranosyl)-(1\rightarrow 4)-(1\rightarrow 4)-(1\rightarrow$ D-glucopyranosyl)- $(1 \rightarrow 1)$ -(2S, 3S, 4R)-4-hydroxy-N-tetracosanoylsphinganine (2). To a solution of compound 19 (45 mg, $25 \mu \text{mol}$) in MeOH-THF (1:1, 2ml) was added dropwise 0.5N NaOCH₃ in MeOH (45 μ l), and the mixture was stirred for 16 h at room temperature. The mixture was neutralized with Amberlist 15 (H⁺ form) and filtered through Celite. The filtrate was evaporated in vacuo, and chromatography of the residue (Sephadex LH-20, pyridine) gave compound 2 (27 mg, 94%), [a]_D -15.8° (c=0.54, in pyridine), $R_{\rm f}$ 0.45 developed with H₂O-Me-OH-CHCl₃ = 2.3:15:30. NMR data: $\delta_{\rm H}$ (pyridine- d_5 -D₂O, 90°C) 5.09, 5.06 (1H \times 2, br. s \times 2, H-1b and H-1c), 4.88 (1H, m, H-2Cer), 4.74 (1H, J=3.1 Hz, H-2b, or H-2c), 4.33 (1H, dd, J=3.4 and 11.6 Hz, H-6c), 4.29 (1H, t, J=9.2 Hz, H-4c), 4.25 (1H, dd, J=4.6 and 10.7 Hz, H'-1Cer), 3.81 (1H, t, J=8.2 Hz, H-2a), 3.67-3.75 (2H, m, H-5b and H-5c), 3.63-3.66 (1H, m, H-5a), and 0.88 (6H, t, J = 7.0 Hz, $CH_2CH_3 \times 2$).

O-(2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-O-(2,3,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→1)-(2S,3S,4R)-3,4-di-O-benzoyl-N-tetracosanoylsphinganine (20). Compound 18 (14 mg, 10 µmol) was coupled with compound 4 (11 mg, 13 µmol) as described for compound 19. Chromatography of the product in THF-n-hexane=2:3 gave compound 20 (4 mg, 20%), [α]_D -13.6° (c=0.22), R_f 0.62 developed with *n*-hexane-THF=1:1. NMR data: δ_H 6.19 (1H, d, J=9.3 Hz, NH), 5.56 (1H, dd, J=3.4 and 8.5 Hz, H-3Cer), 5.35, 5.41 (1H × 2, d × 2, J=3.2 Hz, H-2b, or H-2c, or H-2d), 5.20 (1H, t, J=9.8 Hz, H-4d), 4.79 (1H, dd, J=7.8 and 9.5 Hz, H-2a), 4.52, 4.64, 4.71 (1H × 3, br. s × 3, H-1b, H-1c, and H-1d), 4.57 (1H, ddt, J=3.4, 8.3 and 9.0 Hz, H-2Cer), 4.36 (1H, d, J=7.8 H, H-1a), 3.70 (1H, t, J=9.5 Hz, H-4a), 3.40-3.65 (4H, m, H-5a, H-5b, H-5c, and H-5d), 2.23 (2H, t, J = 7.1 Hz, H-2'Cer and H'-2'Cer), 2.16, 2.15, 2.12, 2.11, 2.10, 2.09, 2.05, 2.05, 2.01, 2.00, 1.99, 1.96, and 1.95 (3H × 13, s × 13, OAc × 13), 0.88 (3H, t, J = 7.1 Hz, CH₂CH₃), and 0.87 (1H, t, J = 7.1 Hz, CH₂CH₃).

Anal. Found: C, 60.89; H, 7.46; N, 0.55%. Calcd. for $C_{106}H_{159}NO_{39}$. H₂O: C, 60.93; H, 7.77; N, 0.67%.

O-(β-D-Mannopyranosyl)-(1-4)-O-(β-D-mannopyranosyl)-(1→4)-O-(β-D-mannopyranosyl)-(1→4)-O-(β-D-glucopyranosyl)-(1→1)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine (3). Compound 20 (3 mg, 1.5 μmol) was deacylated, as described for compound 2, to give compound 3 (2 mg, quantitative yield), $[\alpha]_D - 18.2^\circ$ (c=0.1, in pyridine), R_f 0.28 developed with H₂O-MeOH-CHCl₃=2.3:15:30. NMR data: δ_H (pyridine- d_5 -D₂O, 90°C), 5.08, 5.07, 5.04 (1H × 3, br. s × 3, H-1b, H-1c, and H-1d), 4.88 (1H, m, H-2Cer), 4.74 (1H, d, J=7.6Hz, H-1a), 4.57 (1H, dd, J=5.7 and 10.8 Hz, H-1Cer), 4.56, 4.51 (1H × 2, t × 2, J=9.2 Hz, H-4b and H-4c), 4.41 (3H, m, H-2b, H-2c, and H-2d), 4.33 (1H, dd, J=3.1 and 11.3 Hz, H-6d), 4.30 (1H, t, J=9.5 Hz, H-4d), 4.26 (1H, dd, J=4.6 and 10.4 Hz, H'-1Cer), 3.81 (1H, t, J=8.5 Hz, H-2a), 3.63-3.75 (4H, m, H-5a, H-5b, H-5c, and H-5d), and 0.88 (6H, t, J=7.0 Hz, CH₂CH₃×2).

Acknowledgments. This work was partly supported by special coordination funds from the Science and Technology Agency of the Japanese Government, and also supported by a Nihon University research grant for 1990, and a research grant for assistants (and young researchers). We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the NMR spectra, and Dr. H. Yamazaki and his staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

References

- K. Koike, Y. Nakahara, and T. Ogawa, Agric. Biol. Chem., 54, 2931-2939 (1990).
- H. E. Carter, K. Ohno, S. Nojima, C. L. Tipton, and N. Z. Stanacev, J. Lipid Res., 2, 215-222 (1961).
- T. A. MacMurray and W. R. Morrison, J. Sci. Food Agric., 21, 520–528 (1970).
- 4) R. A. Laine and O. Renkonen, Biochemistry, 12, 1106-1111 (1973).
- M. Ohnishi, S. Ito, and Y. Fujino, Agric. Biol. Chem., 49, 3609-3611 (1985).
- 6) R. A. Laine and O. Renkonen, Biochemistry, 13, 2837-2843 (1974).
- 7) Y. Fujino and M. Ohnishi, Proc. Jpn. Acad., Ser. B, 58, 32-35 (1982).
- 8) Y. Fujino and M. Ohnishi, Proc. Jpn. Acad., Ser. B, 58, 36-39 (1982).
- 9) H. Paulsen and O. Lockhoff, Chem. Ber., 114, 3102-3114 (1981).
- H. Paulsen, R. Lebuhn, and O. Lockhoff, *Carbohydr. Res.*, 103, C7-C11 (1982).
- For a preliminary communication, see K. Koike, M. Mori, Y. Ito, Y. Nakahara, and T. Ogawa, *Glycoconjugate J.*, 4, 109–116 (1987).
- K. Koike, Y. Nakahara, and T. Ogawa, Agric. Biol. Chem., 54, 663– 667 (1990).
- K. Bock, I. Lundt, and C. Pedersen, *Tetrahedron Lett.*, 1973, 1037– 1040.
- 14) G. Excoffier, D. Gagnaire, and J. P. Utille, *Carbohydr. Res.*, 39, 368–373 (1975).
- 15) R. R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19, 732–735 (1980).
- 16) K. Koike, M. Numata, M. Sugimoto, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, **158**, 113–123 (1986).