Heterogeneous Catalysis Hot Paper

International Edition: DOI: 10.1002/anie.201701370 German Edition: DOI: 10.1002/ange.201701370

Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation

Guigao Liu, Xianguang Meng, Huabin Zhang, Guixia Zhao, Hong Pang, Tao Wang, Peng Li, Tetsuya Kako, and Jinhua Ye*

Abstract: The photoreduction of CO_2 is attractive for the production of renewable fuels and the mitigation of global warming. Herein, we report an efficient method for CO₂ reduction over elemental boron catalysts in the presence of only water and light irradiation through a photothermocatalytic process. Owing to its high solar-light absorption and effective photothermal conversion, the illuminated boron catalyst experiences remarkable self-heating. This process favors CO₂ activation and also induces localized boron hydrolysis to in situ produce H_2 as an active proton source and electron donor for CO_2 reduction as well as boron oxides as promoters of CO₂ adsorption. These synergistic effects, in combination with the unique catalytic properties of boron, are proposed to account for the efficiency of the CO_2 reduction. This study highlights the promise of photothermocatalytic strategies for CO_2 conversion and also opens new avenues towards the development of related solar-energy utilization schemes.

Converting carbon dioxide (CO₂), an abundant and inexpensive C_1 feedstock as well as a potent greenhouse gas, into value-added carbon products provides an attractive and promising strategy to meet global energy demands and to simultaneously alleviate anthropogenic climate change.^[1] The ideal route to achieve this goal is to reduce CO₂ catalytically by a photocatalyst with the utilization of solar light as the only input energy source.^[2] However, despite having been studied

```
[*] Dr. G. Liu, Dr. X. Meng, Dr. H. Zhang, Dr. G. Zhao, H. Pang,
   Dr. T. Kako, Prof. J. Ye
   International Center for Materials Nanoarchitectonics (WPI-MANA)
   National Institute for Materials Science (NIMS)
   1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
   E-mail: Jinhua.YE@nims.go.jp
   H. Pang, Prof. J. Ye
   Graduate School of Chemical Sciences and Engineering
   Hokkaido University, Sapporo 060-0814 (Japan)
   Dr. P. Li, Prof. J. Ye
   TU-NIMS International Collaboration Laboratory
   School of Materials Science and Engineering
   Tianjin University, Tianjin (P.R. China)
   and
   Collaborative Innovation Center of Chemical Science and Engineer-
   ing (Tianjin), Tianjin 300072 (P.R. China)
   Dr. T. Wang
   Jiangsu Key Laboratory of Materials and Technology for Energy
   Conversion, College of Materials Science and Technology
   Nanjing University of Aeronautics and Astronautics
   Nanjing 210016 (P.R. China)
Supporting information and the ORCID identification number(s) for
   the author(s) of this article can be found under:
```

http://dx.doi.org/10.1002/anie.201701370.

Angew. Chem. Int. Ed. 2017, 56, 1-6

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

for decades, such processes for CO_2 conversion still remain very inefficient, largely owing to insufficient solar light utilization, the high energy barrier for CO_2 activation, and the sluggish kinetics of the involved multiple e^-/H^+ transfer processes.^[1c,3] Therefore, aiming at promoting the reaction rate of CO_2 conversion, increasing the utilization of solar energy, and also from the view of reducing CO_2 emission, the development of more convenient and effective approaches to solar-light-driven CO_2 reduction is urgently required.

The photothermal effect can be described as the conversion of photon energy into heat and has been considered as an emerging technology of great interest for solar energy harvesting.^[4] As this technology can enable a remarkable and prompt increase in the local temperature at the nanometer scale, it has found a broad range of applications in various fields, including solar power generation, localized water heating, seawater desalination, and catalysis. $^{[4a,b,5]}$ It is well known that thermodynamically stable CO₂ molecules are more reactive at high temperatures.^[6] This thought made us aware of the benefits of the photothermal effect for CO₂ conversion. Particularly, in our recent work, the photoreduction of CO_2 into CO and CH_4 with H_2 gas as the reductant proceeded at a remarkable reaction rate through a photothermocatalytic pathway, demonstrating the important role of the photothermal effect in CO₂ photoreduction.^[3b] However, for this specific method, the employment of H₂ constitutes a major obstacle to potential applications owing to the wellrecognized problem of hydrogen storage and transportation, which is due to the intrinsically very low volumetric density of hydrogen.^[7] New ideas are needed that make use of the photothermal effect for CO₂ conversion, which might lead to distinct new possibilities towards the integration of the efficient production of renewable fuels from CO2 and the utilization of solar energy even though this comes with huge challenges.

Boron has recently gained wide attention owing to its fascinating properties and various potential applications in photocatalysis, superconducting devices, neutron detectors, and hydrogen production from water splitting through self-hydrolysis.^[8] Herein, we attempted to further extend the applicability of this promising material, and investigated the photothermal conversion over elemental boron particles for the first time. More importantly, it was found that upon light irradiation, the boron particles are heated by the photothermal effect, and enable the direct and efficient catalytic reduction of CO₂ into CO and CH₄, with reaction rates outperforming most reported state-of-the-art photocatalysis systems (see the Supporting Information, Table S1). This was attributed to 1) the excellent photohermal effect of the boron

particles, which induces a high local temperature that facilitates CO_2 activation; 2) self-hydrolysis of the boron particles driven by the photothermal effect, which in situ produces H_2 as the active proton source and electron donor for CO_2 reduction and boron oxides as promoters of CO_2 adsorption; and 3) the unique catalytic properties of boron.

In this study, commercial amorphous boron powders were used as the starting materials. As boron has a strong capability to form stable covalently bonded molecular networks, even amorphous boron has previously been demonstrated to inevitably contain regular boron icosahedra.^[9] Accordingly, as seen from our X-ray diffraction (XRD) patterns (Figure S1), some diffraction peaks belonging to β-rhombohedral boron (JCPDS 01-080-0323) were observed for the amorphous boron samples, which is consistent with previous reports.^[9,10] The TEM image in Figure 1 a shows the network morphology of amorphous boron. The amorphous nature was confirmed by high-resolution TEM (HRTEM) imaging (Figure 1b) as no obvious lattice fringes were observed. It should be noted that in agreement with the XRD results, some crystalline boron particles were also found during our TEM studies.

Figure 1. a) TEM and b) HRTEM images and c) UV/Vis/NIR spectrum of the amorphous boron material. The inserted background in gray in (c) is a solar irradiation spectrum. d) The increase in temperature of amorphous boron samples under light irradiation at different light intensities.

Owing to the rather negative potential required for CO_2 reduction and also the fairly positive potential needed for the oxidation of water or sacrificial agents,^[3a,11] a photocatalyst that might enable photocatalytic CO_2 reduction must possess a very large band gap (usually the photocatalyst presents in white or light yellow color),^[1c,2c,12] thus significantly limiting the efficiency of solar light utilization (Figure S2). In sharp contrast, the amorphous boron catalyst employed here has a typical dark brown color (Figure S2 b), implying that it has a wide light absorption range. According to the absorption spectrum in Figure 1 c, the amorphous boron particles show excellent absorption features (absorbance > 1) in the UV and

visible regions of the solar spectrum that also tail even into the NIR region. The former absorption probably originates from the interband transitions, and the latter might be related to the absence of long-range order in the amorphous boron particles.^[13] The intense absorption of amorphous boron implies its high capability for the utilization of solar energy.

Considering the benefits of high temperatures for CO₂ activation, we investigated the photothermal effect of this amorphous boron material. The changes in temperature upon light irradiation at different intensities are depicted in Figure 1 d. As expected, upon light irradiation, an instant and remarkable increase in the temperature of the sample was observed (reaching the maximum temperature within 10 min). Furthermore, a nearly linear relationship between the increase in temperature and the light intensity was observed for the present system (Figure S3). At a light intensity of 456 mW cm⁻² (full arc with a maximum input power of 300 W), the temperature of the sample increased up to 462 °C. Taken together, these results clearly demonstrate the good photothermal properties of the amorphous boron material, which should be beneficial for the activation of CO₂ and subsequent photoreduction.

Before investigating the CO_2 photoreduction, the CO_2 adsorption properties of the amorphous boron material were studied. For comparison, commercial TiO₂, a widely used photocatalyst for CO₂ reduction, was also tested. As shown in Figure S4, although these two compounds possess nearly equal specific surface areas, the CO₂ uptake of the amorphous boron sample was more than twice as large than that of TiO₂. This should be related to the presence of boron oxides on the surface of the boron material (Figure S5),^[14] which are usually considered as trapping sites for CO₂.^[15] Considering the superior CO₂ adsorption capacity and excellent photothermal properties, this amorphous boron material was anticipated to display high CO₂ photoreduction activity.

In the CO₂ photoreduction measurements, water was used as the hydrogen source, and no additional sacrificial agents or metal cocatalysts were employed in the reaction system. These features should be advantageous for potential applications. As expected, full arc irradiation of the amorphous boron material led to continuous formation of CO and CH₄ by CO₂ photoreduction with reaction rates of 1.0 and 2.5 µmolh⁻¹, respectively (Figure 2a). Even under visiblelight irradiation ($\lambda > 400$ nm), the use of the amorphous boron catalyst still led to the formation of CO at 0.8 µmolh⁻¹ and CH_4 at 1.9 µmol h⁻¹ (Figure 2b and Figure S6). To the best of our knowledge, this is the first example of CO₂ photoreduction over amorphous boron. Moreover, it should be noted that the boron material outperformed most photocatalysis systems for CO₂ photoreduction (Table S1). Under long-term irradiation, both CH4 and CO production increased in a nearly linear fashion (Figure S7). This suggests that the catalytic activity of the amorphous boron material for CO₂ photoreduction is fairly stable. When experiments were performed without light irradiation or in the absence of the boron material, CO and CH₄ were not detected (Figure 2b). This result indicates the necessity for light and boron in this CO₂ reduction. To further confirm the origin of the CO and CH₄ products, isotope tracer analyses were conducted with

www.angewandte.org

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 2. a) Gas evolution (CO and CH₄) over the amorphous boron catalyst under full arc irradiation with a Xe lamp. b) Gas-evolution rates under different conditions. c) Time course of CO and CH₄ generation upon irradiation of the amorphous boron catalyst before and after the addition of water to the reaction system. d) High-resolution B 1s XPS spectra of an amorphous boron sample before and after CO₂ photoreduction.

¹³CO₂ and D₂O as the substrates on a GC-MS system under identical catalysis conditions. As shown in Figures S8 and S9, we observed the formation of ¹³CH₄, ¹³CO, and CD₄. These results clearly demonstrate that the carbon and hydrogen sources of the formed reduction products are CO₂ and H₂O. Additionally, apart from CD₄, small amounts of CD_xH_{4-x} (x =3, 2, 1, or 0) products were also formed (m/z = 19, 18, 17, 16, 15, 14, 13, and 12), which should arise from surface-adsorbed H₂O on boron.^[16]

To investigate the mechanism of the CO_2 photoreduction over the boron material, we first examined the CO₂ photoreduction in the absence of H₂O. To rule out any effects from adsorbed water molecules, the boron material was intentionally pretreated in a long-term vacuum process (12 h) before irradiation. Although the absence of water could result in a higher temperature on the sample under irradiation (relative to the normal conditions with water) and thus benefit the activation of CO_2 (Figure S10), only negligible amounts of CO had been formed after five hours (CH4 formation is not reasonable because of the absence of a hydrogen source in the reaction system; Figure 2b, c). This result suggests that the boron material is incapable of catalyzing CO₂ reduction in the absence of water under light irradiation. Indeed, once water had been introduced into the reaction system, both CO and CH4 were detected, and their amounts increased with irradiation time (Figure 2c). This phenomenon indicated the critical role of water in this boron-mediated CO₂ photoreduction while ambiguity still remained as to what reactions occurred over the illuminated boron material after water addition.

To answer this question, the gas products formed upon the addition of water and also the possible surface changes of the boron catalysts during the reaction were carefully explored. Aside from the CO and CH₄ obtained by CO₂ reduction, hydrogen was also detected during the test (Figure S11), which should result from the hydrolysis of boron under the high-temperature conditions induced by the photothermal effect.^[8b,17] Accordingly, B(OH)₃, the other product of boron hydrolysis, was also observed (Figures S12-S14). B(OH)₃ is a volatile compound,^[8b, 17b, 18] and once it has formed on the surface of the illuminated boron sample, it will be gasified owing to the high temperature, thus keeping the boron catalyst surface exposed to the gaseous reaction species (e.g., H₂O, CO₂, or H_2). Indeed, after the test, $B(OH)_3$ was not observed on the boron powders (Figure 2d) but as a deposit on the walls of the reaction cell probably owing to the low surface temperature of the walls (Fig-

ure S12). Additionally, a comparison of the XPS spectra of boron samples recorded before and after CO₂ photoreduction also indicated the generation of some boron suboxide intermediates (BO and B_xO with x > 1) in the test (Figure 2d),^[8d] further corroborating the occurrence of a hydrolysis reaction between boron particles heated by the photothermal effect and water with H₂ and gaseous B(OH)₃ as the products.

Based on these results and considering the high reactivity of H_2 for CO_2 reduction, we speculated that the CO_2 photoreduction observed upon water addition to the system might depend on the presence of H₂. However, using Al₂O₃ as a reference substrate instead of boron, direct irradiation of a gaseous H₂/CO₂ mixture (without boron) did not give rise to any CH₄ products (Figure S15; a 1000 W Xe lamp was employed to guarantee that the substrate temperature (396°C) is nearly equal to that (378°C) achieved under normal conditions with boron as the substrate and a 300 W Xe lamp as the light source; Figure S10). This result implies that the boron material is uniquely able to catalyze CO₂ reduction with the in situ generated H_2 acting as the proton source and electron donor. To provide more evidence supporting this conclusion, a control CO2 photoreduction experiment was carried out with H₂ instead of water. In Figure S16, the continuous photoreduction of CO2 is shown, further suggesting the capability of the boron material to catalytically reduce CO_2 in the presence of H_2 and light irradiation. As this test was performed under water-free conditions, boron oxides or $B(OH)_3$ will not be formed during the reaction, thus ruling out that they have an effect on the CO₂ reduction. Further-

Angew. Chem. Int. Ed. 2017, 56, 1-6

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

more, as shown in Figure S17, under identical irradiation conditions, a lower reaction temperature resulted in significantly decreased activity. This result emphasizes the profound contribution of the photothermal effect of the boron catalyst to efficient CO_2 photoreduction.

To gain more insight into the details of the CO_2 photoreduction over the boron particles, in situ FTIR experiments were conducted. Figure 3 shows IR spectra for CO_2 photo-

Figure 3. In situ FTIR spectra of CO_2 photoreduction over the amorphous boron material recorded after various irradiation times.

reduction over amorphous boron particles for various irradiation times; the band of the boron catalyst (in the presence of CO₂ and water) detected before illumination was used as the background. The bands at 2341 and 2360 cm⁻¹ are associated with adsorbed CO₂ (Figure 3 and Figure S18).^[19] For longer irradiation times, these band intensities gradually increased, illustrating the increased adsorption of CO2 on the boron catalysts. This interesting phenomenon could be explained by the formation of boron oxides (Figure 2d), which have been shown to promote CO₂ adsorption.^[15] Obviously, this enhanced CO₂ adsorption will benefit subsequent photoreduction. The band related to CO was detected at 2100 cm⁻¹.^[20] The increasing peak intensity indicates the gradual formation of CO over the illuminated boron catalysts. Meanwhile, the growing absorption band at 700–1700 cm⁻¹ was attributed to C=O, C-H, and C-OH vibrations, indicative of the formation of some intermediate products of CO₂ reduction, such as aldehydes and bidentate carbonates.^[19,21]

On the basis of the discussion above, we propose the following mechanism for the efficient CO_2 photoreduction over amorphous boron particles. As shown in Figure S19, under light irradiation, the boron particles are heated to a high temperature (378 °C) by photothermal conversion, which enables the localized hydrolysis of boron with water, leading to the in situ generation of H₂ and boron oxides. Then, the reduction of CO_2 to CO and CH_4 is catalyzed by the illuminated boron particles with the in situ formed H₂ as the proton source and electron donor. It is noteworthy that the high efficiency of the CO_2 conversion might be due to several factors: 1) The excellent photothermal effect of the boron particles induces a high local temperature, which favors the activation of CO_2 . 2) The high-temperature-induced localized

boron hydrolysis results in the in situ formation of boron oxides, which could act as promoters for CO_2 adsorption onto the surface of the boron catalysts. 3) The in situ formed H₂ is a highly reactive proton source and electron donor for CO_2 reduction. 4) The amorphous boron material is efficient in solar light utilization and possesses unique catalytic properties for CO_2 reduction. Additionally, crystalline boron also showed good photothermocatalytic activity for CO_2 reduction (Figures S20 and S21). The reason for the difference in activity between amorphous and crystalline boron is still under investigation.

In conclusion, we have shown that elemental boron enables the direct and efficient reduction of CO2 into CO and CH₄ in the presence of water and under light irradiation (without any additional sacrificial agents and cocatalysts). The strong absorption of the boron catalyst in the UV/Vis and even IR region causes a remarkable local photothermal effect, which not only favored the CO₂ activation, but also triggered localized self-hydrolysis of boron particles to produce H₂ as the active proton source and electron donor for CO₂ reduction as well as boron oxides as promoters of CO₂ adsorption. As a consequence of these synergistic effects as well as the unique intrinsic catalytic properties of the boron material, high CO₂ conversion efficiencies were realized. These findings highlight the great promise of elemental boron for CO₂ conversion through a one-step photothermocatalytic process, and might lead to new possibilities for the development of more efficient solar energy utilization schemes.

Acknowledgements

This work received financial support from the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitectonics (MANA), MEXT (Japan), the National Basic Research Program of China (973 Program, 2014CB239301), and the National Natural Science Foundation of China (21633004).

Conflict of interest

The authors declare no conflict of interest.

Keywords: boron materials \cdot CO₂ photoreduction \cdot energy conversion \cdot heterogeneous catalysis \cdot photothermocatalysis

[2] a) Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 2013, 52, 5776–5779; Angew.

www.angewandte.org

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2017, 56, 1-6

a) J. L. White, M. F. Baruch, J. E. Pander III, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, *Chem. Rev.* 2015, *115*, 12888–12935; b) S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, *Angew. Chem. Int. Ed.* 2013, *52*, 7372–7408; *Angew. Chem.* 2013, *125*, 7516–7557; c) W. Tu, Y. Zhou, Z. Zou, *Adv. Mater.* 2014, *26*, 4607–4626.

Chem. 2013, *125*, 5888–5891; b) R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata, O. Ishitani, K. Maeda, *J. Am. Chem. Soc.* 2016, *138*, 5159–5170; c) K. Teramura, S. Iguchi, Y. Mizuno, T. Shishido, T. Tanaka, *Angew. Chem. Int. Ed.* 2012, *51*, 8008–8011; *Angew. Chem.* 2012, *124*, 8132–8135; d) K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, *J. Am. Chem. Soc.* 2011, *133*, 20863–20868.

- [3] a) V. P. Indrakanti, J. D. Kubicki, H. H. Schobert, *Energy Environ. Sci.* 2009, 2, 745–758; b) X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, *Angew. Chem. Int. Ed.* 2014, *53*, 11478–11482; *Angew. Chem.* 2014, *126*, 11662–11666.
- [4] a) N. S. Lewis, *Science* 2016, *351*, aad1920; b) W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, A. Steinfeld, *Science* 2010, *330*, 1797–1801; c) W. Chanmanee, M. F. Islam, B. H. Dennis, F. M. MacDonnell, *Proc. Natl. Acad. Sci. USA* 2016, *113*, 2579.
- [5] a) J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, *Adv. Mater.* **2017**, *29*, 1603730; b) L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, *Nat. Photonics* **2016**, *10*, 393–398.
- [6] D. Pakhare, J. Spivey, Chem. Soc. Rev. 2014, 43, 7813-7837.
- [7] J. Yang, A. Sudik, C. Wolverton, D. J. Siegel, *Chem. Soc. Rev.* 2010, 39, 656–675.
- [8] a) T. Ogitsu, F. Gygi, J. Reed, Y. Motome, E. Schwegler, G. Galli, J. Am. Chem. Soc. 2009, 131, 1903–1909; b) P. Rohani, S. Kim, M. T. Swihart, Adv. Energy Mater. 2016, 6, 1502550; c) Y. Wu, B. Messer, P. Yang, Adv. Mater. 2001, 13, 1487–1489; d) G. Liu, L.-C. Yin, P. Niu, W. Jiao, H.-M. Cheng, Angew. Chem. Int. Ed. 2013, 52, 6242–6245; Angew. Chem. 2013, 125, 6362–6365.
- [9] R. G. Delaplane, U. Dahlborg, W. S. Howells, T. Lundström, J. Non-Cryst. Solids 1988, 106, 66-69.
- [10] a) R. G. Delaplane, U. Dahlborg, B. Granéli, P. Fischer, T. Lundström, J. Non-Cryst. Solids 1988, 104, 249–252; b) I. Solodkyi, D. Demirskyi, Y. Sakka, O. Vasylkiv, J. Am. Ceram. Soc. 2015, 98, 3635–3638.

- [11] G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako, J. Ye, J. Am. Chem. Soc. 2016, 138, 9128–9136.
- [12] J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 2014, 136, 8839–8842.
- [13] a) A. A. Berezin, O. A. Golikova, M. M. Kazanin, T. Khomidov, D. N. Mirlin, A. V. Petrov, A. S. Umarov, V. K. Zaitsev, *J. Non-Cryst. Solids* 1974, *16*, 237–246; b) U. Kuhlmann, H. Werheit, T. Lundström, W. Robers, *J. Phys. Chem. Solids* 1994, *55*, 579–587.
- [14] T. R. Burkholder, L. Andrews, J. Chem. Phys. 1991, 95, 8697– 8709.
- [15] U. K. Ghosh, S. E. Kentish, G. W. Stevens, *Energy Procedia* 2009, 1, 1075–1081.
- [16] X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye, *Chem. Commun.* 2014, *50*, 11517–11519.
- [17] a) B. Wahbeh, S. Tell, T. Abu Hamed, R. Kasher, Int. J. Hydrogen Energy 2013, 38, 6210–6214; b) I. Vishnevetsky, M. Epstein, T. Abu-Hamed, J. Karni, J. Sol. Energy Eng. 2008, 130, 014506–014506.
- [18] B. Wahbeh, T. A. Hamed, R. Kasher, *Renewable Energy* 2012, 48, 10–15.
- [19] Y. Liu, S. Chen, X. Quan, H. Yu, J. Am. Chem. Soc. 2015, 137, 11631–11636.
- [20] a) L. Wang, W. Zhang, S. Wang, Z. Gao, Z. Luo, X. Wang, R. Zeng, A. Li, H. Li, M. Wang, X. Zheng, J. Zhu, W. Zhang, C. Ma, R. Si, J. Zeng, *Nat. Commun.* **2016**, *7*, 14036; b) G. S. Blackman, M. L. Xu, D. F. Ogletree, M. A. Van Hove, G. A. Somorjai, *Phys. Rev. Lett.* **1988**, *61*, 2352–2355.
- [21] a) N. Ulagappan, H. Frei, J. Phys. Chem. A 2000, 104, 490–496;
 b) J. Raskó, T. Kecskés, J. Kiss, J. Catal. 2004, 226, 183–191.

Manuscript received: February 7, 2017 Revised: March 8, 2017 Final Article published:

These are not the final page numbers!

www.angewandte.org

Communications

Communications

Heterogeneous Catalysis

G. Liu, X. Meng, H. Zhang, G. Zhao, H. Pang, T. Wang, P. Li, T. Kako, J. Ye* ______

Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation

Four in one: Elemental boron is an efficient catalyst for direct CO_2 reduction into CO and CH_4 in the presence of water under light irradiation through a one-step photothermocatalytic process. The elemental boron material harvests the incident light, converts it into thermal energy, generates hydrogen, and catalyzes the overall process.

6 www.angewandte.org

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2017, 56, 1-6