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Summary. A synthesis of lactam 2, which constitutes a formal total synthesis of (-)-slaframine 1,
is described with key steps being (a) intramolecular aldol reaction of ketoaldehyde 4 to establish
the indolizidine framework and (b) diastereoselective reduction of enone 5 using the Corey

oxazaborolidine 7.

(-)-Slaframine 1 is a fungal metabolite produced by Rhizoctonia leguminicola that is known to
undergo oxidative activation in vivo to produce a potent and neurotoxic muscarinic agent." Since its isolation
in 1965, both the biosynthetic origins and metabolism of slaframine have been investigated® and, especially in
recent years, this indolizidine alkaloid has been the subject of extensive synthetic studies.® Our interest in this
area focused on use of this molecule as a vehicle for the development of new methodology for the
construction and elaboration of functionalised indolizidines and in this paper we describe an enantiospecific

synthesis of lactam 2™ which constitutes a formal total synthesis of (-)-slaframine 1.
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The indolizidine nucleus of slaframine was assembled using the intramolecular aldol sequence
shown in Scheme 1. Protection of (S)-2-amino-4-pentenoic acid followed by N-acylation of
3, 3-dimethoxypyrrolidine gave amide 3 (82 % overall). Oxidative alkene cleavage followed by ketal
hydrolysis then gave ketoaldehyde 4 (63 % from 3) and the key intramolecular aldol reaction of 4 was
carried out in the presence of piperidine (in THF at r.1.) to give the indolizidine enone § in 31 % yield.
This aldol cyclisation process, which requires enolisation at C(2) of the pyrrolidine ring (a selectivity that

is generally disfavoured®), has only been achieved using a secondary amine - a variety of other, more
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conventional aldol reaction conditions failed. The major side reaction observed in the conversion of 4 to

§ involved competitive enolisation of the aldehyde component and elimination of CszI'lz.6
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Scheme 1. Reagents: i, (S)-N-(Cbz)-2-amino-4-pentenoic acid, EDC, CH,Cl; ii, OsO. (cat.),
NalQ,, aq. THF; iii, 2M HC], aq. THF; iv, piperidine, THF, r.t. 24 h., then H,0%,1 h.

With the indolizidine framework available, methods were examined for introduction of the two
remaining stereocentres (at C(/) and C(8a)) required for slaframine with the intention that the amino residue
at C(6) could provide a diastereofacial directing role. Initial reduction of the C=C bond of 5 was unsuccessful
because of (a) the level of selectivity observed and (b) complications encountered in the subsequent ketone
manipulation. 1, 2-Reduction of the enone moiety of 5 gave allylic alcohols 6a/b but with poor selectivity
(0-30 %d.e.) for 6a, regardless of the nature of the hydride source used (Scheme 2). A possible explanation
for this observation may be found within the structure of 5. With five adjacent sp’-centres (at C(1), N(4),
C(5), C(8), and C(8a)) the indolizidine ring system is severely flattened. In addition, the C(6)-N-Cbz group
most likely adopts a quasi-equatorial position thereby minimising its directing ability. Given this, indolizidine
5 is perhaps better viewed as a “prochiral” substrate and we have sought to establish the stereochemistry of

the C(1)-OH of 6a via reagent rather than substrate control.

Of a series of asymmetric reducing agents examined, the Corey oxazaborolidine’® was the most
effective. Reduction of § using a stoichiometric amount of 7 (from (R)-proline) gave the desired (18)-allylic
alcohol 6a (60 %; 295 %d.e. as judged by '"H NMR). A similar level of selectivity was observed for the
formation of the (1R)-isomer 6b using enr-7 and the effective lack of any significant matched/mismatched
relationship between reagent and substrate served to reinforce our notion of the nominally “prochiral” nature

of indolizidine 5.
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Completion of the synthetic sequence was straightforward and was carried out as shown in Scheme 2.
Silylation of 6a followed by hydrogenation and re-protection gave lactam 2,'® in 86 % overall from 6a and the
synthesis of lactam 2 and its conversion (in 3 steps) to (-)-slaframine 1 has been reported by Hua*™ A
problem associated with the hydrogenation step must be highlighted: long reaction times led to formation (up
to 15 %) of the C(6) epimer of 2 - the precursor to 6-epislaframine.
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Scheme 2. Reagents: i, e.g. NaBH,, LiAlH,, i-Bu,AlH, LS-Selectride, ii, 7, CH,Cl,, -20 °C;
iii, TBDMSC], imidazole, DMF; iv, H,, 10 % Pd/C, EtOH then Boc,O, CH,Cl,.

In summary, the synthesis of lactam 2, which constitutes a formal total synthesis of (-)-slaframine 1,
has been achieved. This chemistry illustrates a new approach to indolizidine synthesis based on an
intramolecular aldol reaction, together with the application of the Corey oxazaborolidine towards solving a

problem of diastereoselectivity in the 1,2-reduction of an enone.
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