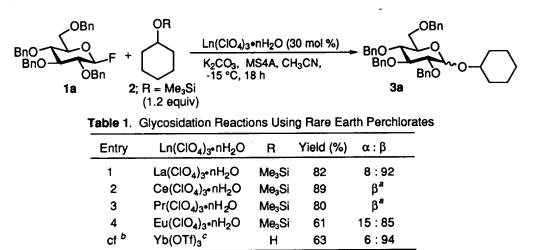


0040-4039(95)00760-1

Rare Earth Perchlorate Catalyzed Glycosidation of Glycosyl Fluorides with Trimethylsilyl Ethers


Won-Sup Kim, Shigeru Hosono, Hiroaki Sasai, and Masakatsu Shibasaki *

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract: A glycosidation of glycosyl fluorides with trimethylsilyl ethers has been found to be promoted more effectively by catalytic La(ClO₄)₃ than by stoichiometric amounts of rare earth salts. A mechanism for the present glycosidation is proposed.

Development of stereoselective glycosidation reactions is an important topic in carbohydrate chemistry. Hence, a variety of glycosidation methods^{1a} have been developed since the first use of the classical Königs-Knorr synthesis.^{1b} Of these methods, glycosyl fluorides have most frequently been employed as donors in the synthesis of complex sugar chains.² These fluorides have been glycosidated in the presence of various Lewis acids such as SnCl₂-AgClO₄,^{3a} Cp₂MCl₂-AgClO₄ (M = Ti, Zr, Hf),^{3b} SiF₄,^{3c} Me₃SiOTf,^{3c} BF₃•Et₂O,^{3d} Me₂GaX (X = Cl, OTf),^{3e} TiF₄,^{3f} and Tf₂O.^{3g}

Recently, we succeeded in developing a new method for the glycosidation of glycosyl fluorides promoted by stoichiometric amounts of rare earth salts, which has allowed us to achieve several notable glycosidation reactions.⁴ In an attempt to improve the new glycosidation reaction, we have found that a catalytic amount of rare earth perchlorate more effectively promotes the condensation of appropriately protected glycosyl fluorides and trimethylsilyl ethers⁵ than does the stoichiometric method. Furthermore, a possible mechanism for the catalytic procedure is supported by ¹⁹F NMR spectral data.

 $\int_{-\infty}^{\infty} \alpha$ -Anomer was not detectable by ¹H NMR analysis.

^bSee reference 4. ^c 1.2 equiv was used.

We began examining the reactivity of rare earth perchlorate hydrates in the glycosidation reaction of the glucose derivative 1a and cyclohexyl trimethylsilyl ether 2. Of the many types of rare earth salts available, we chose rare earth perchlorates because of the increased fluorophilicity of the metal cations.⁶ We were pleased to find that several rare earth perchlorates were highly efficient in promoting this type of reaction. For β -selectivity, the use of 30 mol % of La(ClO₄)₃·nH₂O, Ce(ClO₄)₃·nH₂O or Pr(ClO₄)₃·nH₂O, in the presence of K₂CO₃ (4 mol equiv) and MS4A in CH₃CN was found to be most effective (Table 1, entry 1, 2, 3).^{7,8} Under these conditions the β -glycoside 3a was obtained in a highly stereocontrolled manner⁹ more efficiently than the previous procedure,⁴ which gave 3a in 63% yield (α : $\beta = 6$: 94). In addition, we also found that the α -glycoside was obtained exclusively (94%) on treatment of 1a with 2, La(ClO₄)₃•nH₂O (30 mol %), CaCO₃ (4 mol equiv) MS4A in Et₂O (Table 2, entry 1). To better understand the mechanism of this glycosidation reaction, we obtained the ¹⁹F NMR spectrum of the reaction mixture in acetonitrile-d3, and only trimethylsilyl fluoride was observed.¹⁰ This result suggests that the interaction of the glycosyl fluoride with the rare earth perchlorate produces an oxonium cation intermediate, which then reacts with the trimethylsilyl ether to form the glycoside, trimethylsilyl fluoride, and rare earth perchlorate, thereby making possible the catalytic cycle. Furthermore, it is noteworthy that the glycosidation does not proceed in the presence of rare earth perchlorates such as Gd(ClO4)3-nH2O, Ho(ClO4)3•nH2O, Yb(ClO4)3•nH2O, Y(ClO4)3•nH2O, suggesting that only rare earth metals with a certain range of ionic radii are effective for this type of glycosidation. On the basis of the above results, we have selected La(ClO₄)₃·7H₂O as an economical catalyst for this reaction.¹¹

Next we examined the glycosidation reaction of 1a with the 2,3,4- and 2,3,6-benzyl protected glucopyranoside derivatives 4 and 5. As shown in Table 2, these reactions were found to proceed smoothly, giving 6a (85%, $\alpha : \beta = 9 : 91$), 6a (94%, $\alpha : \beta = 75 : 25$), 7a (75%, $\alpha : \beta = 23 : 77$), and 7a (63%, $\alpha : \beta = 78 : 22$).¹² Also in these cases, improved results were obtained in comparison with the stoichiometric procedure.⁴ For example, it has been reported that the stoichiometric reaction of 1a with 4 affords 6a (68%, $\alpha : \beta = 12 : 88$).

Some other examples of the La(ClO₄)₃ catalyzed glycosidation reactions using benzoyl or acetyl protected glycosyl fluorides¹³ are also summarized in Table 2. The reactions were found to proceed quite smoothly, affording only the β -glycosides **6b**,¹⁴ **6c**,¹⁵ 7b,¹⁴ and/or 7c¹⁵ in good to excellent yields. Particularly noteworthy are the glycosidations using 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl fluoride 1c (Entry 6 and 10), because no reaction had occurred using the stoichiometric procedure.⁴

Finally, this glycosidation method was applied in the synthesis of the trisaccharide of an intermediate leading to globotriaosyl ceramide.¹⁶ It has been well established that glycosphingolipides are molecules of considerable biological significance within the area of cellular recognition. We were pleased to find that the La(ClO₄)₃ catalyzed glycosidation reaction of the galactosyl fluoride 8 with the lactosyl derivative 9¹⁶ proceeded efficiently to give the α -trisaccharide 10 exclusively in 81% yield.¹⁷

In conclusion, we have succeeded in developing an improved glycosidation reaction catalyzed by rare earth perchlorate. We believe that this glycosidation reaction could play a key role in glycosidations using glycosyl fluorides as glycosyl donors. Further studies of this reaction are currently underway.

Acknowledgment: This study was supported by a Grant-in-Aid for Scientific Research on Priority Areas No. 06241216 (New Development of Rare Earth Complexes) from the Ministry of Education, Science and Culture, Japan.

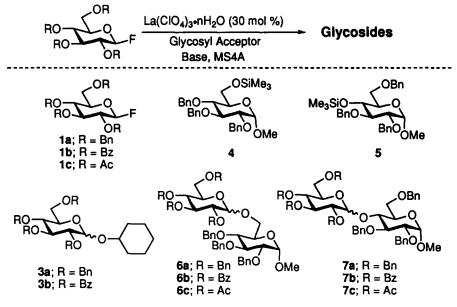
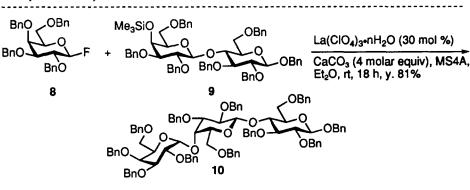



Table 2. Glycosidation Reactions by La(ClO₄)₃•nH₂O (30 mol %)

Entry	Glycosyl Donor	Glycosyl Acceptor	Solv.	Base ^b	Temp. (°C)	Time (h)	Glycosides	Yield (%)	α:β
1	1a	2	Et ₂ O	CaCO ₃	rt	18	3a	94	α ^d
2	1b	2	CH₃CN	K ₂ CO ₃	0	2	3b	94	β
3	1 a	4	CH₃CN	K ₂ CO ₃	-15	38	6a	85	9 : 91
4	1 a	4	Et ₂ O	CaCO₃	rt	18	6a	94	75 : 25
5	1b	4	CH₃CN	K ₂ CO ₃	rt	2	6b	93	β
6	1C	4	CH₃CN	K ₂ CO ₃	5	1	6c	80	β
7	1a	5	CH₃CN	K ₂ CO ₃	-15	38	7a	75	23 : 77
8	1a	5	Et ₂ O	CaCO₃	rt	24	7a	63	78 : 22
9	1b	5 [°]	CH₃CN	K ₂ CO ₃	rt	1	7b	99	β
10	1c	5	CH₃CN	K ₂ CO ₃	5	1	7c	75	β

^a 1.2 equiv was used. ^b 4 molar equiv was used. ^c 1.5 equiv was used. ^dβ-Anomer was not detectable by ¹H NMR analysis.

References and Notes

- (a) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503. (b) Königs, W.; Knorr, E. Chem. Ber., 1901, 34, 957.
- (a) Nicolaou, K. C.; Hummel, C. W.; Bockovich, N. J.; Wong, C.-H. J. Chem. Soc., Chem. Commun., 1991, 870.
 (b) Nicolaou, K. C.; Bockovich, N. J.; Carcanague, D. R. J. Am. Chem. Soc., 1993, 115, 8843.
 (c) Nakano, T.; Ito, Y.; Ogawa, T. Tetrahedron Lett., 1991, 32, 1569.
- (a) Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett., 1981, 431. (b) Suzuki, K.; Maeta, H.; Suzuki, T.; Matsumoto, T. Tetrahedron Lett., 1989, 30, 6879. (c) Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett., 1984, 25, 1379. (d) Kunz, H.; Sager, W. Helv. Chim. Acta, 1985, 68, 283. (e) Kobayashi, S.; Koide, K.; Ohno, M. Tetrahedron Lett., 1990, 31, 2435. (f) Kreuzer, M.; Thiem, J. Carbohydr. Res., 1986, 149, 347. (g) Wessel, H. P., Tetrahedron Lett., 1990, 31, 6863.
- 4. Hosono, S.; Kim, W-S.; Sasai, H.; Shibasaki, M. J. Org. Chem., 1995, 60, 4.
- 5. For other examples of catalytic glycosidations of glycosyl fluorides and trimethylsilyl ethers; see references 3c and 3d, and references cited therein.
- (a) Bernardo, P. D.; Choppin, G. R.; Portanova, R.; Zanonato, P. L. Inorg. Chim. Acta, 1991, 207, 85.
 (b) Pascal, J. L.; Favier, F. J. Chem. Soc., Dalton Trans., 1992, 1997.
 (c) Bunzli, J-C. G.; Kaspaek, V. Inorg. Chim. Acta, 1991, 182, 101.
 (d) Bunzli, J.-C. G.; Yersin, J.-R.; Mabillard, C. Inorg. Chem., 1982, 21, 1471.
- 7. Anhydrous rare earth perchlorates may explode; see references 6b and 6c.
- 8. The glycosidation reaction of 1a with 2 by 20 mol % of La(ClO₄)₃•nH₂O, K₂CO₃ and MS4A in CH₃CN at room temperature also gave the product in 95% yield (α : β = 36 : 64).
- 9. The structures of α and β -anomers were determined by ¹H- and ¹³C-NMR after separation by silica gel column chromatography.
- 10. The procedure of the NMR study is as follows. Treatment of 1a with 2, 20 mol % of La(ClO₄)₃, K₂CO₃ and MS4A in CD₃CN at room temperature for 1 h, and the ¹⁹F NMR spectrum was measured after filtration. The chemical shift of trimethylsilyl fluoride was found to be at -29 ppm (external standard CF₃COOH at -76.5 ppm).
- Purchased from Soekawa Chemical Co., Ltd., Tokyo, Japan (La(ClO₄)₃•7H₂O is cheaper than Ce(ClO₄)₃•8H₂O and Pr(ClO₄)₃•6H₂O).
- 12. A representative procedure: First La(ClO₄)₃·7H₂O (30 mol % to a glycosyl donor), K₂CO₃ (4.0 mol equiv) and MS4A (ca. 50 mg) were dried at ca. 180 °C in vacuo for 2 h, leaving about two waters of hydration. A CH₃CN solution (2 mL) of the glycosyl fluoride **1a** (54.2 mg, 0.1 mmol) and the glycosyl acceptor **4** (1.2 equiv) was then added at -15 °C. After the reaction was complete, saturated aq. NaHCO₃ was added. Filtration to remove inorganic compounds and usual work up gave a product which was purified by silica gel column chromatography. Undried La(ClO₄)₃•7H₂O (30 mol %), CaCO₃ and MS4A in Et₂O at room temperature afforded **6a** in 89% yield (α : β = 75 : 25).
- 13. Hayashi, M.; Hashimoto, S.; Noyori, R. Chem. Lett., 1984, 1747.
- 14. Marra, A.; Mallet, J-M.; Amatore, C.; Sinaÿ, P. Synlett., 1990, 572.
- 15. Konradsson, P.; Mootoo, D. R.; Mcdevitt, R. E.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun., 1990, 270.
- 16. Qiu, D.; Schmidt, R. R. Liebigs Ann. Chem., 1992, 217, and references cited therein.
- 17. The stoichiometric procedure gave 10 in 75% yield.

(Received in Japan 4 March 1995; revised 15 April 1995; accepted 21 April 1995)