Synthesis and Molecular Structures of Perfluoro-n-alkyl **Complexes of Platinum(II) and Platinum(IV) Containing Tetramethylethylenediamine (TMEDA) or** 1,2-Bis(diphenylphosphino)ethane (DPPE) Ligands

Russell P. Hughes, *,[†] Joel T. Sweetser,[†] Mark D. Tawa,[†] Alex Williamson,[†] Christopher D. Incarvito,[‡] Brian Rhatigan,[‡] Arnold L. Rheingold,[‡] and Gene Rossi[‡]

Departments of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, and University of Delaware, Newark, Delaware 19716

Received May 21, 2001

Reaction of (TMEDA)Pt(CH₃)₂ with *n*-perfluoropropyl iodide in hexanes results in an apparent *cis* addition of the perfluoroalkyl iodide to give the six-coordinate Pt(IV) complex $(TMEDA)Pt(n-C_3F_7)(CH_3)_2I$ (**6a**). Complex **6a** slowly and reversibly reductively eliminates CH_3I in solution to afford an equilibrium with the Pt(II) complex (TMEDA) $Pt(n-C_3F_7)(CH_3)$ (9a). Addition of triethylamine drives the equilibrium toward 9a. Identical reactions of perfluoroethyl iodide are observed to afford **6b** and **9b**. Reaction of **6a** with AgBF₄ generates the cationic Pt(IV) complex [(TMEDA)Pt(n-C₃F₇)(CH₃)₂(OH₂)]BF₄ (**11**), which reacts with NaCl to form $(TMEDA)Pt(n-C_3F_7)(CH_3)_2Cl$ (12); both reactions retain the *cis* stereochemistry of the starting material **6a**. Reaction of **9a** with CF_3SO_3H in moist solvents generates the cationic Pt(II) complex [(TMEDA)Pt(n-C₃F₇)(OH₂)]O₃SCF₃ (17), which reacts with iodide to afford the neutral iodide complex (TMEDA)Pt(n-C₃F₇)I (14). Reaction of complex 9a with I₂ in hexanes results in *trans* addition of I_2 to generate (TMEDA)Pt(C_3F_7)(CH₃)I₂ (13), which is converted to $(TMEDA)Pt(n-C_3F_7)I(7)$ by treatment with AgBF₄ followed by NaI. Complex **14** reacts with NaBH₄ to produce (TMEDA)Pt(n-C₃F₇)H (**18**). The TMEDA ligand can be displaced from **9a** by DPPE to give $(DPPE)Pt(n-C_3F_7)(CH_3)$ (**19**), which reacts with CF_3 - SO_3H to give the triflate complex (DPPE)Pt($n-C_3F_7$)O₃SCF₃ (**20**), in equilibrium with a water complex, $[(DPPE)Pt(n-C_3F_7)(OH_2)]O_3SCF_3$ (21). Reaction of 20 with iodide, or 19 with I_2 , gives (DPPE)Pt(n-C₃F₇)I (**22**), which can be converted to the hydrido complex (DPPE)Pt(n- C_3F_7)H (23) with NaBH₄. The X-ray crystal structures of complexes **6a**, **9a**, **9b**, **10**, **13**, **18**, 19, 20, and 23 have been determined, and structural comparisons in terms of ligand *cis* and trans influences are discussed.

Introduction

The oxidative addition reaction of an alkyl halide to a metal center is among the most useful methods of forming a new metal-carbon bond.¹ As a result of a recent renaissance of interest in the chemistry of fluoroalkyl ligands, involving F-migrations to and from metal centers^{2,3} and activation of carbon-fluorine bonds by hydrolysis,⁴ hydrogenolysis,⁵ or hydride reagents,⁶ we have been interested in reevaluating and expanding some of the previously reported methodology for the synthesis of late metal-fluoroalkyl complexes. Many

such complexes have also been reported using oxidative addition methodology, usually involving perfluoroalkyl iodides,⁷⁻¹² but we have shown previously that this route can be problematical for both early and late metals due to fluoroalkylation at ligand sites, rather than at the metal center.13-16

There have been many studies of oxidative additions of alkyl halides to square planar Pt(II) precursors.¹⁷⁻²¹ In most cases, reactions of primary alkyl iodides and

(7) McCleverty, J. A.; Wilkinson, G. J. Chem. Soc. 1964, 4200-4203. (8) Rosevear, D. T.; Stone, F. G. A. J. Chem. Soc. A 1968, 164-167. (9) Mukhedkar, A. J.; Green, M.; Stone, F. G. A. J. Chem. Soc. (A) **1969**, 3023-3026.

 (10) Stone, F. G. A. Endeavour 1966, 25, 33–38.
 (11) Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411– 428

- (13) Hughes, R. P.; Maddock, S. M.; Guzei, I. A.; Liable-Sands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 2001, 123, 3279-3288.
- (14) Hughes, R. P.; Husebo, T. L.; Holliday, B. J.; Rheingold, A. L.; Liable-Sands, L. M. J. Organomet. Chem. 1997, 548, 109–112.
- (15) Hughes, R. P.; Maddock, S. M.; Rheingold, A. L.; Liable-Sands,
 L. M. J. Am. Chem. Soc. 1997, 119, 5988–5989.
 (16) Hughes, R. P.; Husebo, T. L.; Rheingold, A. L.; Liable-Sands,
 L. M.; Yap, G. P. A. Organometallics 1997, 16, 5–7.

[†] Dartmouth College.

[‡] University of Delaware.

⁽¹⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry;

<sup>University Science Books: Mill Valley, CA, 1987.
(2) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G.</sup> *J. Am. Chem. Soc.* **2000**, *122*, 8916–8931.

⁽³⁾ Huang, D.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119, 3185-3186.

⁽⁴⁾ Hughes, R. P.; Lindner, D. C.; Rheingold, A. L.; Liable-Sands, L. M. *J. Am. Chem. Soc.* **1997**, *119*, 11544–11545.

⁽⁵⁾ Hughes, R. P.; Smith, J. M. J. Am. Chem. Soc. 1999, 121, 6084-6085

⁽⁶⁾ Draft, B. M.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2000. 122. 8559-8560.

⁽¹²⁾ Appleton, T. G.; Hall, J. R.; Kennard, C. H. L.; Mathieson, M. T.; Neale, D. W.; Smith, G.; Mak, T. C. W. *J. Organomet. Chem.* **1993**, *453*, 299–306.

bromides with dimethyl platinum(II) complexes occur by a polar $S_N 2$ mechanism to give a Pt(IV) complex with kinetically controlled *trans* stereochemistry,¹⁸ although *cis* products have been shown to result from subsequent isomerization.²² On occasion, cationic five-coordinate intermediates have been detected spectroscopically.²³ Not surprisingly, the five-coordinate intermediate in the oxidative addition reaction has also been shown to serve as the key intermediate for reductive elimination of methyl iodide or ethane from Pt(IV).^{24–26}

While most studies of oxidative addition/reductive elimination to Pt(II) have involved complexes bearing monodentate or bidentate phosphorus ligands, compounds with chelating nitrogen ligands have also been examined.¹⁸ cis-Dialkyl and -diarylplatinum(II) complexes with nitrogen-donor ligands usually react with alkyl halides to give the trans oxidative addition product,^{27–30} while the corresponding *cis* isomer can be formed either by competitive *cis* oxidative addition pathways or by trans oxidative addition with subsequent isomerization of the platinum(IV) product to a thermodynamically more stable *cis* isomer.¹⁸ Dimethylplatinum(II) complexes containing pyridine,²⁷ 2,2'bipyridine,³¹ 1,10-phenanthroline,^{31,32} and tetramethvlethylenediamine (TMEDA) ligands^{33,34} have been studied. For example, reaction of (TMEDA)Pt(CH₃)₂ (1) with benzyl bromide affords the *trans* addition product 2.33

Fluoroalkyl complexes of platinum have also been approached in a similar fashion. For example, (COD)-Pt(CH₃)₂ reacts with CF₃I to give (COD)Pt(CF₃)₂ with [Pt(CH₃)₃I]₄ as a byproduct;¹¹ subsequently the mixed alkyl compound (COD)Pt(CH₃)(CF₃) was also identified as a product,¹² and (NBD)Pt(CH₃)₂ was shown to afford (NBD)Pt(CH₃)(CF₃) and (NBD)Pt(CF₃)₂.¹² Reactions with perfluoroethyl, perfluoropropyl, and perfluoroisopropyl iodides apparently formed stable platinum(II)

- (17) Ellis, P. R.; Pearson, J. M.; Haynes, A.; Adams, H.; Bailey, N. A.; Maitlis, P. M. Organometallics **1994**, *13*, 3215–3226.
- A.; Maitlis, P. M. Organometallics 1994, 13, 3215–3226.
 (18) Rendina, L. M.; Puddephatt, R. J. Chem. Rev. 1997, 97, 1735– 1754.
- (19) Jawad, J. K.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 1977, 1466–1469.
- (20) Jawad, J. K.; Puddephatt, R. J. J. Organomet. Chem. **1976**, *117*, 297–302.
- (21) Scott, J. D.; Puddephatt, R. J. Organometallics **1986**, *5*, 1538–1544.
- (22) Felice, V. D.; Giovannitti, B.; Renzi, A. D.; Tesauro, D.; Penunzi, A. *J. Organomet. Chem.* **2000**, *593–594*, 445–453.
- (23) Črespo, M.; Puddephatt, R. J. *Organometallics* **1987**, *6*, 2548–2550.
- (24) Brown, M. P.; Puddephatt, R. J.; Upton, C. E. E. J. Chem. Soc., Dalton Trans. **1974**, 2457–2465.
- (25) Goldberg, K. I.; Yan, J.; Breitung, E. M. J. Am. Chem. Soc. 1995, 117, 6889–6896.
- (26) Goldberg, K. I.; Yan, J. Y.; Winter, E. L. J. Am. Chem. Soc. **1994**, *116*, 1573–1574.
- (27) Appleton, T. G.; Hall, J. R.; Williams, M. A. *J. Organomet. Chem.* **1986**, *303*, 139–149.
- (28) Aye Khin, T.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J. D.; Watson, A. A. Organometallics **1989**, *8*, 1518–1522.
- (29) Byers, P. K.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J. D. Organometallics **1988**, 7, 1363–1367.
- (30) Arsenault, G. J.; Crespo, M.; Puddephatt, R. J. Organometallics 1987, 6, 2255–2256.
- (31) Monaghan, P. K.; Puddephatt, R. J. Organometallics **1984**, *3*, 444–449.
- (32) Monaghan, P. K.; Puddephatt, R. J. Organometallics **1985**, *4*, 1406–1412.
- (33) Graaf, W. d.; Boersma, J.; Koten, G. v. *Organometallics* **1990**, *9*, 1479–1484.
- (34) Prokopchuck, E. M.; Jenkins, H. A.; Puddephatt, R. J. Organometallics 1999, 18, 2861–2866.

complexes, though none could be isolated in pure form.¹¹ These products are all presumed to result from facile reductive elimination from a platinum(IV) intermediate.

Recently, we described the reactions of perfluoroalkyl iodides with (TMEDA)Pd(CH₃)₂ to give square planar fluoroalkyl complexes **3** and **4**.³⁵ These reactions were also assumed to proceed via oxidative addition to give an unobserved Pd(IV) intermediate, followed by reductive elimination to give the Pd(II) product. Products **3** and **4** exhibited interesting structural parameters and variable-temperature NMR behavior, and we were interested in preparing their Pt(II) analogues for comparison and to see if we could observe Pt(IV) intermediates en route to their formation. Accordingly, we have studied the corresponding reactions of the platinum analogue **1** with various fluoroalkyl iodides.

Results and Discussion

Perfluoroalkyl Pt(IV) and Pt(II) Complexes with TMEDA Ligands. When a suspension of **1** in hexanes is treated with *n*-C₃F₇I, the starting material rapidly dissolves to form a yellow solution, from which a white solid slowly precipitates in excellent yield. The ¹H NMR spectrum of the product is consistent with a Pt(IV) adduct, (TMEDA)Pt(C₃F₇)(CH₃)₂I, exhibiting four distinct NMe resonances and two separate PtMe signals. The ¹⁹F NMR spectrum shows each pair of fluorines in the CF₂ groups to be diastereotopic; the two α-CF₂ fluorine resonances are well separated (by 16.5 ppm), show a large geminal coupling constant, ²J_{FF} = 257 Hz,

⁽³⁵⁾ Hughes, R. P.; Overby, J. S.; Williamson, A.; Lam, K.-C.; Concolino, T. E.; Rheingold, A. L. *Organometallics* **2000**, *19*, 5190–5201.

Figure 1. ORTEP diagram of the non-hydrogen atoms of 6a, showing atom-labeling scheme. Thermal ellipsoids are shown at the 30% level.

and also couple to Pt with different coupling constants $({}^{2}J_{F1Pt} = 300 \text{ Hz}, {}^{2}J_{F2Pt} = 251 \text{ Hz})$. These data indicate that the product possesses no symmetry and are inconsistent with a *trans* adduct of structure 5, (Scheme 1) in contrast to the reactions of the bis(dimethylphosphino)ethane analogue of 1 with fluoroalkyl iodides, which do give analogous trans adducts.³⁶ Of the two possible *cis* adducts, structure **6a** is confirmed by a single-crystal X-ray diffraction study (see below) and is assumed to be the solution structure. An ORTEP of the structure of **6a** is shown in Figure 1. Details of the crystallographic determinations of all compounds in this paper are presented in Table 1, and discussion of structural details is deferred until later. An analogous reaction occurs with C₂F₅I to afford the perfluoroethyl complex 6b.

The oxidative addition reactions of fluoroalkyl iodides to transition metals are unlikely to proceed via a polar S_N^2 attack by the metal at carbon, due to the unfavorable polarity of the $C^{\delta-}-I^{\delta+}$ bond.^{37,38} In previous systems involving reactions of primary perfluoroalkyl iodides we have postulated that these reactions proceed via electron transfer to the fluoroalkyl iodide, followed by rapid loss of iodide from the resultant radical anion, and very fast trapping of the fluoroalkyl radical at the metal.^{13,16} An analogous pathway in this case, shown in Scheme 1 using perfluoro-n-propyl iodide, would proceed via intermediate 7, which is indistinguishable from that obtained by nucleophilic displacement at carbon. Subsequent trapping of 7 by iodide would give 5, which is not observed, or 7 could undergo a rearrangement to 8 followed by trapping by iodide to afford the observed product 6. Alternatively, the observed cis stereochemistry may be the result of an initial, perhaps concerted, cis oxidative addition or might be obtained by initial *trans* oxidative addition to give **5**, followed by cis reductive elimination of CH₃I to form 9a, which then undergoes trans oxidative addition of CH₃I to form complex 6a. However, the latter sequence appears to violate the principle of microscopic reversibility in requiring a different stereochemistry for reductive elimination and oxidative addition of CH₃I. In addition,

		L	able 1. Crysta	l Data and Su	mmary of X-ray	Data Collectio	ų		
	6a	9a	9 b	10	13	18	19	20	23
ormula	C ₁₁ H ₂₂ F ₇ IN ₂ Pt	$C_{10}H_{19}F_7N_2Pt$	$\mathrm{C_9H_{19}F_5N_2Pt}$	C ₈ H ₂₂ I ₂ N ₂ Pt	$C_{10}H_{19}F_7I_2N_2Pt$	$C_9H_{17}F_7N_2Pt$	$C_{30}H_{27}F_7P_2Pt$	$C_{30}H_{24}F_{10}O_{3}P_{2}PtS$	$C_{29}H_{25}F_7P_2Pt$
Ň	637.30	495.36	445.35	595.17	749.16	481.34	777.55	911.58	763.52
pace group	Pbca	P1	P2(1)/n	C2/c	P2(1)/n	P2(1)/c	P2(1)/n	P2(1)/n	P2(1)/c
ı, Å	8.6369(6)	8.471(10)	11.6898(8)	7.8250(11)	9.1644(11)	8.5383(5)	11.4958(13)	12.1620(8)	17.867(2)
h, Å	15.2123(10	9.017(6	8.6887(5)	13.7115(18)	17.094(2)	20.3171(12)	16.647(3)	15.9726(10	10.1868(12)
, Å	26.0683(16)	9.972(9)	13.7432(9)	13.4113(17)	11.4330(14)	8.3699(5)	15.675(2)	16.7558(11)	31.964(4)
ι, deg	00	90.62(6)	60	06	06	06	06	06	6
i, deg	06	94.02(9)	106.6140(10)	104.217(2)	93.837(2)	105.0150(10)	104.413(12)	104.6000(10)	103.467(2)
', deg	00	99.40(6)	00	06	06	06	06	06	00
/, Å ³	3425.0(4)	749.5(12)	1337.61(15)	1394.9(3)	1787.0(4)	1402.38(14)	2905.4(7)	3149.9(4)	5657.6(11)
•	8	2	4	4	4	4	4	4	8
) (calcd), g/cm ³	2.472	2.195	2.211	2.834	2.785	2.280	1.778	1.922	1.793
ubs coeff, mm^{-1}	10.060	9.427	10.530	14.454	11.368	10.073	5.003	4.714	5.137
emp, K	173(2)	241(2)	173(2)	173(2)	173(2)	173(2)	253(2)	293(2)	173(2)
liffractometer					Siemens P4				
adiation					Mo K α 0.71073 A				
R(F), %a	3.67	7.06	2.30	5.27	4.12	6.37	3.64	3.22	5.91
ξ(wF ²), % ^a	11.92	15.32	5.76	15.53	13.91	20.05	8.07	10.01	11.98
^a Quantity minim	$ized = R(wF^2) = \Sigma_1$	$[w(F_{a}^{2} - F_{a}^{2})^{2}]/\Sigma[(w)$	$(F_c^2)^2 l^{1/2}$; $R = \Sigma \Lambda / \Sigma$	(F_{a}) , $\Lambda = (F_{a} - 1)$	F.)I.				

⁽³⁶⁾ Hughes, R. P.; Sweetser, J. T.; Williamson, A.; Incarvito, C. D.; Lam, K.-C.; Rheingold, A. L. Manuscript in preparation.

 ⁽³⁷⁾ Wakselman, C.; Lantz, A. In Organofluorine Chenr, Banks, R.
 E., Smart, B. E., Tatlow, J. C., Eds.; Plenum: New York, NY, 1994; pp 177-194.

⁽³⁸⁾ Wakselman, C. J. Fluorine Chem. 1992, 59, 367-378.

Scheme 1

9a, which can be prepared independently (see below), is virtually insoluble in hexane, and treatment of a suspension of **9a** with CH_3I results in no reaction, although the reaction to form **6a** proceeds smoothly in $CDCl_3$ solution. Consequently, the intermediacy of **9a** in the formation of **6a** in hexanes seems unlikely. Fortunately, the low solubility of complex **6a** in hexanes precludes it from undergoing further reactions (see below) and allows it to be isolated in excellent yields.

On dissolution of complex 6a in acetone, CH₂Cl₂, CHCl₃, or toluene at room temperature, slow reversible reductive elimination of CH₃I occurs and an equilibrium mixture of 6a and 9a is obtained after 24 h. The equilibrium constant, measured at 21 °C, is 0.015 in acetone- d_6 or CDCl₃ and 0.008 in toluene- d_8 . This reaction presumably involves dissociation of iodide from 6a, followed by nucleophilic attack of iodide on the axial methyl group of intermediate 8, i.e., the microscopic reverse of the expected pathway for oxidative addition of CH₃I to 9a. Addition of excess Et₃N to the equilibrium mixture affords, after several hours, complete conversion to [Et₃NMe]I and 9a, which was isolated and characterized by spectroscopic and crystallographic methods (see below). The role of Et₃N may be to shift the equilibrium by reacting with eliminated CH₃I to produce [Et₃NMe]I, or it may directly attack a methyl ligand in cationic intermediate 8. We have no evidence to distinguish between these possibilities in this system, but observations outlined later suggest the latter pathway. While no reaction between 9a and excess CH₃I is observed in hexanes, addition of excess CH₃I to a solution of **9a** in CDCl₃ affords complete conversion to **6a** within 4 h, thereby confirming the stereochemistry of oxidative addition of CH₃I to **9a** and, by microscopic reversibility, the stereochemistry of reductive elimination from 6a.

A similar equilibrium occurs with **6b**, which can be cleanly transformed to the Pt(II) compound **9b** using NEt₃ in refluxing acetone. Complex **9b** was also char-

Figure 2. ORTEP diagram of the non-hydrogen atoms of **9a**, showing atom-labeling scheme. Thermal ellipsoids are shown at the 30% level.

acterized crystallographically. An ORTEP of the structure of **9a** is provided in Figure 2, and that of **9b** in Figure 3; details of the structures are discussed later.

In contrast to the clean reaction in hexanes, treatment of **1** with n-C₃F₇I in THF solution affords a mixture of several products. Compounds **9a** and **10** were identified as components of this mixture, but could only be isolated in small quantities using this method; the best route to **9a** is via **6a** as described above. Complex **10** contains no fluorinated ligand, and we have made no attempts to identify its rather murky origins, but an ORTEP of its structure is provided in Figure 4; details of the structure are discussed later.

Attempts to prepare an analogue of the putative cationic Pt(IV) intermediate **8** by treatment of **6a** with AgBF₄ in toluene afforded a yellow solid **11** after workup that appears to contain a water molecule in the sixth coordination site; inclusion of a molecule of water generates C and H percentages that agree well with the experimental data, while omission of the water molecule

Figure 3. ORTEP diagram of the non-hydrogen atoms of **9b**, showing atom-labeling scheme. Thermal ellipsoids are shown at the 30% level.

Figure 4. ORTEP diagram of the non-hydrogen atoms of **10**, showing atom-labeling scheme. Thermal ellipsoids are shown at the 30% level.

puts the values outside acceptable limits, but, unlike many other fluoroalkyl(aqua) complexes we have prepared,^{4,5,39} we cannot provide unambiguous IR or NMR data for the presence of a coordinated water ligand. The overall stereochemistry at Pt is retained in **11**, as evidenced by diastereotopic α - and β -CF₂ groups and inequivalent Pt-Me groups in the NMR spectra. In addition, **11** reacts with NaCl to produce a corresponding chloro analogue **12** that is isostructural with **6**, as indicated by ¹H and ¹⁹F NMR spectroscopy. The fact that the transformation of **6a** \rightarrow **11** \rightarrow **12** can be accomplished with retention of stereochemistry indicates that the cation **8** is probably configurationally stable.

Based on this accumulation of circumstantial evidence, it seems that either the initial oxidative addition of perfluoro-*n*-propyl iodide to give **6a** occurs via an overall concerted *cis* addition or the initially formed cation **7** rearranges to **8** quickly compared to the rate at which iodide reacts at platinum. However, analogous cations containing basal methyl and axial perdeuteriomethyl groups scramble via an analogous rearrangement on a time scale reported to be slow compared to the rate of trapping of the cation by iodide,⁴⁰ so the notion of a concerted addition in our case may not be far fetched.

Reaction of complex **9a** with 1 equiv of I_2 affords the Pt(IV) product (TMEDA)Pt(n-C₃F₇)(CH₃)I₂, **13**, as a deep red crystalline solid (Scheme 2). Proton NMR spectroscopy shows only two environments for the NMe groups, indicating that the two iodide ligands are either both *trans* or both *cis*; the *trans* configuration is confirmed by X-ray crystallography, and an ORTEP is shown in Figure 5.

In contrast to **6a**, with a labile iodide *trans* to a CH_3 ligand, the iodide in complex **13** is far less labile, and reductive elimination of CH_3I in $CDCl_3$ solution is very slow, forming an approximately 1:1 mixture with **14**

⁽³⁹⁾ Hughes, R. P.; Lindner, D. C.; Smith, J. M.; Zhang, D.; Incarvito, C. D.; Lam, K.-C.; Liable-Sands, L. M.; Sommer, R. D.; Rheingold, A. L. *J. Chem. Soc., Dalton Trans.* **2001**, in press.

⁽⁴⁰⁾ Jenkins, H. A.; Yap, G. P. A.; Puddephatt, R. J. Organometallics 1997, 16, 1946-1955.

Figure 5. ORTEP diagram of the non-hydrogen atoms of **13**, showing atom-labeling scheme. Thermal ellipsoids are shown at the 30% level.

after 3 weeks. Addition of excess NaI in EtOH only slightly accelerates the conversion of 13 to 14, which is complete after 4 weeks. However, reaction of 13 with AgBF₄ followed by addition of NaI cleanly produces the Pt(II) complex 14 as a yellow solid. We assume that this reaction proceeds by initial removal of one of the iodide ligands by Ag⁺ to form cation **15**, which, on addition of iodide nucleophile, rapidly eliminates CH₃I via attack at CH₃ to form 14. We must also assume that cation 15 can rearrange to isomer 16 with an axial methyl in order for such a nucleophilic attack to produce square planar **14**. This cation rearrangement is analogous to that proposed for the conversion of 7 to 8 during formation of **6a** (vide supra). The observation that elimination of CH₃I from 16 does not occur without added nucleophile (I⁻) suggests that it is direct nucleophilic attack on the CH₃ group of 16 that is responsible for reductive elimination.^{25,41} Analogous nucleophilic attack by water on the CH₃ ligand of a cationic Pt(IV) intermediate has been identified as a key step in the reductive elimination of methanol.42

Reaction of complex **9a** with CF_3SO_3H (HOT_{*i*}) in moist CH_2Cl_2 produces the cationic Pt(II) complex **17**, which forms an equilibrium in acetone- d_6 solution, after a few

Figure 6. ORTEP diagram of the non-hydrogen atoms of **18**, showing atom-labeling scheme. Thermal ellipsoids are shown at the 30% level.

F21

C21

hours, with a second compound, presumably [(TMEDA)-Pt(C₃F₇){(CD₃)₂CO}]OT_f. Addition of excess H₂O reforms **17**. This cationic complex reacts with iodide to afford the iodo(fluoropropyl) complex **14**. Complex **14** reacts with NaBH₄ in EtOH solution to produce the hydride complex **18**, which has a metal hydride resonance at δ -20.96 ppm and a Pt-H stretch in the IR spectrum at 2197 cm⁻¹. This compound has also been characterized crystallographically, and an ORTEP is shown in Figure 6.

Perfluoroalkyl Pt(II) Complexes with Diphosphine Ligands. The TMEDA ligand in these Pt(II) complexes can be displaced by chelating diphosphine ligands, as shown in Scheme 3. Complex **9a** reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) in refluxing toluene to afford the corresponding diphosphine analogue **19**; the structure of **19** was confirmed crystallographically, and an ORTEP is shown in Figure 7. Treatment of **19** with HOT_f affords a white solid triflate complex **20**, presumably with liberation of methane; no elimination of fluoroalkane was observed. The structure of **20** was also confirmed crystallographically, and an ORTEP is presented in Figure 8. In moist CD₂Cl₂

⁽⁴¹⁾ Crumpton, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2000, 122, 962–963.

⁽⁴²⁾ Luinstra, G. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1993, 115, 3004–3005.

Figure 7. ORTEP diagram of the non-hydrogen atoms of **19**, showing atom-labeling scheme. Only the ipso-carbons of each phenyl ring are shown for clarity. Thermal ellipsoids are shown at the 30% level.

F43

Figure 8. ORTEP diagram of the non-hydrogen atoms of **20**, showing atom-labeling scheme. Only the ipso-carbons of each phenyl ring are shown for clarity. Thermal ellipsoids are shown at the 30% level.

solution at room temperature the ¹⁹F NMR spectrum of this complex shows two sets of broad resonances for the triflate and fluoroalkyl ligands in an approximately 1:1 ratio. We attribute this behavior to the presence of an equilibrium between **20** and a water complex **21**, analogous to the TMEDA analogue **17**. Cooling the sample or addition of water to the NMR sample at room temperature shifts the equilibrium toward **21**. However, unlike the TMEDA analogue **17**, it is the coordinated triflate complex **20** that crystallizes, even from moist solvents, perhaps illustrating the difference in affinity for water between the harder (TMEDA)Pt center compared to the softer (DPPE)Pt analogue.

In contrast to the reaction of the TMEDA analogue **9a** with I_2 , to afford the Pt(IV) complex **13**, reaction of the DPPE complex **19** with I_2 affords only the Pt(II) complex **22**, which can also be prepared cleanly by

Figure 9. ORTEP diagram of the non-hydrogen atoms of one of the two independent molecules of **23**, showing atomlabeling scheme. Only the ipso-carbons of each phenyl ring are shown for clarity. Thermal ellipsoids are shown at the 30% level.

reaction of the triflate complex **20** with sodium iodide. Clearly, elimination of CH₃I from a Pt(IV) intermediate is more facile with DPPE as a ligand than with TMEDA. This may be a steric effect, as we observe that analogous eliminations from 1,2-(dimethylphosphino)ethane Pt(IV) complexes are actually more difficult than from TMEDA analogues.⁴³ Treatment of **22** with NaBH₄ in ethanol affords the hydride complex 23 in high yield. A similar complex, $(DPPE)Pt(CF_3)H$, has been prepared in a similar manner.44-47 The proton and fluorine NMR spectra of 23 show complex coupling patterns. The hydride couples with the platinum (J = 1209 Hz), the *trans*-phosphorus (J = 189 Hz), the *cis*-phosphorus (J=15 Hz), the α -CF₂ (J=7.5 Hz), and the β -CF₂ (J=6.5 Hz). The α -CF₂ couples with the platinum (J = 379Hz), the *trans*-phosphorus (J = 32.6 Hz), the *cis*phosphorus (J = 31.7 Hz), the CF₃ (J = 10 Hz), and the hydride (J = 7.5 Hz). In fluoroalkyl groups ${}^{3}J_{FF}$ is often close to zero⁴⁸ and is not observed in our compounds. Interestingly, the β -CF₂ couples with the platinum (J = 150 Hz), the hydride (J = 6.5 Hz), and only to the *cis*-phosphorus (J = 7.3 Hz). This particular phosphorus, which is also trans to the hydride ligand, can be unambiguously assigned by using non-proton-decoupled ³¹P NMR; it has the large coupling to the hydride, as expected. The structure of **23** was confirmed by X-ray crystallography. The compound crystallizes with two independent molecules in the asymmetric unit; an ORTEP of one molecule is shown in Figure 9.

It is noteworthy that none of the water complexes **11**, **17**, or **21** show any evidence of hydrolysis reactions of

- (46) Michelin, R. A.; Facchin, G.; Ros, R. *J. Organomet. Chem.* **1985**, *279*, C25–C28.
- (47) Del Pra, A.; Zanotti, G.; Bardi, R.; Belluco, U.; Michelin, R. A. Cryst. Struct. Commun. **1979**, *8*, 729-736.
- (48) Emsley, J. W.; Phillips, L.; Wray, V. Fluorine Coupling Constants; Pergamon: Oxford, 1977.

F42

F43

⁽⁴³⁾ Hughes, R. P.; Sweetser, J. T.; Tawa, M. D.; Williamson, A. Unpublished observations.

⁽⁴⁴⁾ Michelin, R. A.; Ros, R.; Guadalupi, G.; Bombieri, G.; Benetollo, F.; Chapuis, G. *Inorg. Chem.* **1989**, *28*, 840–846.

⁽⁴⁵⁾ Michelin, R. A.; Belluco, U.; Ros, R. Inorg. Chim. Acta 1977, 24, L33–L34.

Table 2. Selected Bond Lengths (Å) and Angles (deg) for the Coordination Spheres of Pd(II) – and Pt(II)-Fluoroalkyl Complexes

	3a ³⁵	3b ³⁵	9a	9b	18	19	20	23
$\overline{Pt-X(1)}$	2.106(10), 2.078(10	2.052(5)	2.148(18) ^a	2.060(5) ^a	b	2.108(7) ^a	2.142(4) ^c	b
Pt-C(2)	1.996(9), 1.970(11)	1.990(5)	2.01(2)	1.995(4)	1.996(10)	2.067(7)	2.087(6)	2.049(13), 2.074(14)
Pt-E(1)	2.222(8), 2.228(8)	2.235(4)	$2.14(2)^d$	$2.205(4)^d$	$2.155(10)^d$	$2.2984(19)^{e}$	2.2062(14) ^e	2.331(3), ^e 2.313(3) ^e
Pt-E(2)	2.162(9), 2.139(9)	2.167(4)	$2.172(19)^d$	$2.161(3)^d$	$2.123(8)^{d}$	$2.2832(19)^{e}$	$2.3094(14)^{e}$	$2.264(3), e^{e} 2.259(3)e^{e}$
X(1) - Pt - C(2)	86.8(4), 87.2(4)	87.7(2)	88.3(9)	89.02(18) ^a	b	89.0(3) ^a	86.0(2) ^a	b
E(1)-Pt-E(2)	82.1(3), 82.6(3)	82.39(18)	81.7(8) ^d	$82.72(14)^d$	82.4(3) ^d	84.91(7) ^e	85.34(5) ^e	85.47(12), ^e 85.57(11) ^e
X(1)-Pt-E(2)	92.6(4), 91.7(4)	92.0(2)	92.3(8)	91.09(17)	b	92.3(2)	94.85(11)	b
C(2)-Pt-E(1)	98.6(3), 98.6(4)	97.97(19)	97.7(9)	97.21(15)	100.2(4)	93.8(2)	93.8(2)	99.3(4), 98.6(4)

^{*a*} $X = CH_3$. ^{*b*} X = H. ^{*c*} X = O. ^{*d*} E = N. ^{*e*} E = P.

the α -CF₂ groups, as has been observed in analogous fluoroalkyl(aqua) cations of Rh(III).⁴ Furthermore, treatment of the water complexes 11, 17, or 21 or the triflate complex **20** with H₂ results in no reaction, affording no evidence of any hydrogenolysis of the α -CF₂ bonds, as has been observed in analogous compounds of Ir(III).⁵ It seems clear that fluorines on a carbon α to Pt(II) or Pt(IV) are much less labile than those α to Rh(III) or Ir(III).

Dynamic Behavior of the TMEDA Rings. We have shown previously that the ¹⁹F NMR spectra of palladium complexes 3 and 4 are temperature dependent, due to a slowing of the ring pucker inversion of the TMEDA ring at low temperatures, a process with $\Delta G^{\ddagger} = 11 - 13$ kcal mol⁻¹.³⁵ In a puckered ring ground state there is a stereocenter at the metal, and the α -CF₂ and β -CF₂ groups contain diastereotopic fluorines. At low temperatures each pair of diastereotopic fluorines appears as a well-separated, and strongly coupled, AX spin system, each of which coalesces as the temperature is raised. In iodo complex 4 the chemical shift difference between the α -CF₂ fluorines is so large (~35 ppm at 470 MHz) that their coalescence temperature is close to ambient, and at room temperature the α -CF₂ resonance is invisible.

Like its palladium analogue 4,35 the room-temperature ¹⁹F NMR spectrum of **14** in toluene- d_8 shows only a CF₃ triplet and a broad β -CF₂ singlet. As pointed out earlier, in fluoroalkyl groups ${}^{3}J_{\rm FF}$ is often close to zero 48 and is unobserved in our compounds. Consequently, the CF₃ triplet arises from a ${}^{4}J$ coupling to the α -CF₂ rather than to the β -CF₂ fluorines, but the α -CF₂ resonance itself is not observed. On progressive cooling, the β -CF₂ resonance separates into two doublets corresponding to two diastereotopic fluorines, and two broad humps begin to appear, corresponding to two diastereotopic α -CF₂ fluorines. At -60 °C these become two sharp doublets, well separated by 29.8 ppm (at 470 MHz), but with platinum satellites still too broad to observe, probably due to chemical shift anisotropy effects that have been well documented in other compounds.49-55 When the sample of **14** is heated to 90 °C, the β -CF₂ fluorines are

observed as a sharp singlet with platinum satellites and the α -CF₂ has also begun to sharpen to a singlet.

Similar behavior is observed for 9a, in which the α -CF₂ resonance at room temperature is broad in CD₂-Cl₂ solution. At -70 °C both the α - and β -CF₂ resonances separate into four sharp doublet resonances, with a large coupling between the two individual β -CF₂ fluorines (${}^{2}J_{\text{FF}} = 284$ Hz) and between the two individual α -CF₂ fluorines (²*J*_{FF} = 272 Hz). While the platinum satellites for the β -CF₂ fluorines are broad and appear as narrow shoulders, those for the α -CF₂ fluorines are only slightly broadened and are dramatically different for each fluorine atom (${}^{2}J_{F1Pt} = 535$ Hz, ${}^{2}J_{\text{F2Pt}} = 285$ Hz). The F–Pt coupling constant for the α -CF₂ group at room temperature is the approximate mean of these two values (${}^{2}J_{\rm FPt} = 429$ Hz). The separation between the two α -CF₂ resonances at -70 °C is 5.5 ppm. The ¹H NMR spectra of **9a** at room temperature and at -70 °C both show only two environments for the NMe groups, indicating that the chemical shift difference is small and decoalescence has not yet occurred. However, the -70 °C spectrum shows four separate environments for the hydrogens of the CH₂CH₂ backbone and very broad Pt-satellites.

The room-temperature ¹⁹F NMR spectrum of the hydrido analogue 18 in CD_2Cl_2 is sharp. However, on cooling to -20 °C, the resonances corresponding to the α - and β -CF₂ fluorines begin to broaden, and at $-75 \,^{\circ}\text{C}$ the α -CF₂ fluorines appear as two doublets ($^{2}J_{FF} = 276$ Hz) with different platinum couplings (${}^{2}J_{F1Pt} = 384$ Hz, ${}^{2}J_{\text{F2Pt}} = 328$ Hz), though not as dramatically different as those in **9a**. In contrast to **14** and **9a**, the diastereotopic α -CF₂ resonances are only separated by 1.4 ppm.

The Pt(IV) complex 13 has the same symmetry as 14, and its ¹⁹F NMR spectrum at room temperature shows equivalent fluorines within each CF_2 group. On cooling to -20 °C, the resonances corresponding to the α - and β -CF₂ groups start to become broad and at -70 °C separate into four broad humps. The TMEDA ring puckering process in this platinum(IV) complex appears to be more facile than that in the Pt(II) analogues.

Structural Comparisons. Details of the crystal structure determinations of all compounds determined here are presented in Table 1. Selected bond lengths and angles for the square planar Pt(II) compounds are presented in Table 2, along with comparison data for 3a and 3b. Analogous values for octahedral Pt(IV) compounds appear in Table 3. To allow for easy comparison, in each series a common numbering system is used, with atom X(1) [X = CH₃, H, O] always *trans* to E(1) (E = N, P), and atom C(2) (the α -carbon of the fluorinated ligand) always *trans* to E(2). In the Pt(IV)

⁽⁴⁹⁾ Skvortsov, A. N. Russ. J. Gen. Chem. 2000, 70, 1023-1027. (50) Ghosh, P.; Desrosiers, P. J.; Parkin, G. J. Am. Chem. Soc. 1998, 120, 10416-10422.

⁽⁵¹⁾ Gay, I. D.; Young, G. B. Organometallics 1996, 15, 2264-2269. (52) Lindner, E.; Fawzi, R.; Mayer, H. A.; Eichele, K.; Hiller, W.

Organometallics 1992, 11, 1033-1043. (53) Ismail, I. M.; Kerrison, S. J. S.; Sadler, P. J. Polyhedron 1982, 1, 57-59.

⁽⁵⁴⁾ Doddrell, D. M.; Barron, P. F.; Clegg, D. E.; Bowie, C. J. Chem. (55) Lallemand, J. Y.; Soulie, J.; Chottard, J. C. J. Chem. Soc., Chem.

Commun. 1980, 436-438.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for the Coordination Sphere of Pt(IV)-Fluoroalkyl Complexes

(/		/ -	
	6a	10	13
Pt-C(1)	2.064(9)	2.092(14)	2.098(10)
Pt-C(2)	2.050(6)		2.083(9)
Pt-C(1A)	2.077(6)		
Pt-N(1)	2.275(7)	2.282(11)	2.312(7)
Pt-N(2)	2.226(5)		2.262(7)
Pt-I(1)	2.8037(5)	2.6731(10)	2.6936(6)
Pt-I(2)			2.6916(6)
C(1)-Pt-C(2)	95.4(3)	91.4(10)	96.6(3)
N(1)-Pt-N(2)	82.5(2)	82.8(5)	82.3(2)
C(1)-Pt-N(2)	89.5(3)	92.9(6)	88.5(3)
C(2)-Pt-N(1)	92.7(2)		92.6(3)
C(1A) - Pt(1) - N(1)	92.2(3)		
C(2) - Pt(1) - I(1)	89.81(17)		88.5(2)
C(1) - Pt(1) - I(1)	85.9(2)	85.9(4)	84.6(2)
N(2) - Pt(1) - I(1)	93.77(13)	93.2(3)	92.37(17)
N(1) - Pt(1) - I(1)	93.15(15)	96.4(3)	93.97(12)

complexes the "equatorial plane" is used to mean the plane corresponding to N(1) and N(2) and the two atoms trans to them. Two sets of data are presented for 23, corresponding to the two independent molecules in the asymmetric unit.

We have presented elsewhere a discussion of the structural *trans* influences⁵⁶ of perfluoroalkyl and methyl ligands in (TMEDA)Pd complexes 3.35 The structure of **9a** is of sufficiently poor quality to preclude meaningful comparisons, but its perfluoroethyl analogue 9b illustrates the expected shorter bond to the fluoroalkylated carbon than to the CH₃ ligand, and the lower *trans* influence of fluoroalkyl compared to methyl. Comparison with the structure of Pd analogue 3b illustrates that the compounds are virtually identical in terms of bond lengths to the metal center. Comparison of **9b** with the hydrido complex 18 is also interesting; the Pt-fluoroalkyl distance remains unchanged, but both Pt-N distances are significantly shorter in 18 than in 9b. The shortening of the Pt-N(2) distance *trans* to R_F may reflect the reduced steric demand of the cis ligand H relative to CH₃, while the corresponding shortening of the Pt-N(1) distance may reflect a weaker *trans* influence of H relative to CH₃ in these systems. These differences also illustrate the difficulty of isolating *cis* steric influences from trans electronic influences in comparing bond distances and emphasize the dangers of overinterpretation of bond length data.

Some useful comparisons can be made with the series of DPPE analogues. Comparison of 9b with 19 shows that both Pt-C bonds are significantly longer in the diphosphine complex, perhaps reflecting the greater trans influence of P compared to N, but perhaps also reflecting a difference in *cis* steric influences of the two chelating ligands. The Pt-fluoroalkyl distance is still shorter than the Pt–CH₃ distance, and the fluoroalkyl *trans* influence is still weaker than the corresponding influence of CH₃. Therefore, the order of *trans* influences of fluoroalkyl versus CH₃ holds for diamine ligands, which cannot be π -acceptors, and diphosphine ligands, which can. This supports the proposal⁵⁷ that π -acceptor properties of ligands are relatively unimportant in determining trans influences. However it is also interesting that, in a comparison of **19** and **23**, the Pt-P(1)distance *trans* to H in **23** is significantly longer than that *trans* to CH_3 in **19**, exactly the opposite of the observation in the TMEDA analogues discussed above. The Pt-P(2) bond *cis* to H in **23** is shorter than that *cis* to CH_3 in **19**, once again illustrating that *cis* steric influences may be more important than any trans influences in determining bond distances. The Pt-P(1)distance in triflate complex **20** illustrates that triflate has a weaker *trans* influence than CH₃ or H, but the lengthening of the Pt-P(2) distance in **20** compared to those in 19 and 23 is most likely a reflection of the larger steric demand of triflate.

The series of octahedral Pt(IV) complexes 6a, 10, and 13 (Table 3) provide analogous comparisons within the series and also with their square planar Pt(II) analogues (Table 2). In each of **6a** and **13** the Pt distances to fluoroalkyl and CH₃ are no longer significantly different, but the bonds to the N still reflect the lower trans influence of fluoroalkyl compared to CH₃ in each compound. All bonds in the "equatorial" plane of 13 are longer than those in **6a**, probably reflecting the steric effects of two "axial" iodides in the former compound compared to a single iodide and a methyl in the latter. The $Pt-CH_3$ distance in **10** is identical to that in **13** and longer than that in 6a, probably for the same reason. Once again it is difficult to separate steric effects from any electronic effects on bond distances.

Experimental Section

General Considerations. Unless otherwise noted, all reactions were performed in oven-dried glassware, using standard Schlenk techniques, under an atmosphere of nitrogen, which had been deoxygenated over BASF catalyst and dried using Aquasorb, or using drybox techniques. THF, diethyl ether, hexanes, and CH₂Cl₂ were dried and degassed over alumina columns under $\mathrm{N}_2.^{58}$ $^1\mathrm{H}$ NMR (300 MHz) and ¹⁹F (282 MHz) were recorded on a Varian UNITY plus 300 system in the solvent indicated. Variable-temperature¹H (500 MHz) and ¹⁹F (470 MHz) NMR spectra were recorded on a Varian UNITY plus 500 system in the solvent indicated. ¹HNMR chemical shifts were referenced to TMS using the protio impurity in the solvent peak, and ¹⁹F chemical shifts were referenced to CFCl₃. Microanalyses were performed by Schwarzkopf Microanalytical Laboratory (Woodside, NY).

Perfluoroalkyl iodides were purchased from Aldrich, treated with $Na_2S_2O_3$ to remove residual I_2 , and vacuum distilled before use. (TMEDA)Pt(CH₃)₂ was prepared according to a literature procedure.⁵⁹

(TMEDA)Pt(n-C₃F₇)(CH₃)₂I (6a). To a stirring suspension of (TMEDA)Pt(CH₃)₂ (0.564 g, 1.65 mmol) in hexanes (20 mL) was added n-C₃F₇I (0.40 mL, 2.77 mmol). The solid rapidly dissolved to form a yellow solution, followed by slow precipitation of a white solid. The mixture was stirred for 16 h and then filtered. The solid residue was washed with hexanes and air-dried. Yield: 0.854 g, 81%. Anal. Calcd for C₁₁H₂₂F₇IN₂Pt: C, 20.73; H, 3.48; N, 4.39. Found: C, 20.80; H, 3.47; N, 4.34. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 1.42 (m, 3H, ²J_{HPt} = 64.2 Hz, PtMe), 1.74 (t, ${}^{4}J_{\rm HF}$ = 2.0 Hz, 3H, ${}^{2}J_{\rm HPt}$ = 69.3 Hz, PtMe), 2.42 (s, 3H, ${}^{3}J_{HPt} = 18.6$ Hz, NMe), 2.61 (s, 3H, ${}^{3}J_{HPt} = 12.9$ Hz, NMe), 2.61–3.90 (m, 4H, CH₂), 3.30 (s, 3H, ${}^{3}J_{\rm HPt} = 15.0$

⁽⁵⁶⁾ Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. **1973**, 10, 335-422.

⁽⁵⁷⁾ Landis, C. R.; Firman, T. K.; Root, D. M.; Cleveland, T. J. Am. Chem. Soc. 1998, 120, 1842-1854.

⁽⁵⁸⁾ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;

 ⁽⁵⁹⁾ Yang, D. S.; Bancroft, G. M.; Dignard-Bailey, L.; Puddephatt,
 R. J.; Tse, J. S. *Inorg. Chem.* 1990, *29*, 2487–2495.

Hz, NMe), 3.35 (s, 3H, ${}^{3}J_{HPt} = 9.3$ Hz, NMe). 19 F NMR (CDCl₃, 282.2 MHz, 23 °C): $\delta -119.9$ (d, ${}^{2}J_{FF} = 284$ Hz, β -CF), -117.2 (d, ${}^{2}J_{FF} = 284$ Hz, β -CF), -81.1 (dm, ${}^{2}J_{FF} = 257$ Hz, ${}^{2}J_{FPt} = 300$ Hz, α -CF), -79.6 (t, ${}^{4}J_{FF} = 13$ Hz, ${}^{4}J_{FPt} = 20$ Hz, CF₃), -64.6 (dm, ${}^{2}J_{FF} = 257$ Hz, ${}^{2}J_{FPt} = 251$ Hz, α -CF). Crystals for the structure determination were obtained from CH₂Cl₂-hexane at -20 °C as yellow blocks.

(TMEDA)Pt(C₂F₅)(CH₃)₂I (6b). To a suspension of (TM-EDA)Pt(CH₃)₂ (0.100 g, 0.293 mmol) in hexanes (20 mL) was added CF₃CF₂I (0.2 g, 0.82 mmol). The mixture was stirred overnight at room temperature in the absence of light. The resulting white suspension was filtered, and the residue was washed with hexanes (3 \times 5 mL). The white solid was dissolved in CH₂Cl₂ (5 mL) and filtered through Celite. The colorless filtrate was collected, and the product was precipitated upon addition of hexanes (20 mL). The white solid was dried in vacuo to give the product, 0.143 g, 83%. Anal. Calcd for C₁₀H₂₂F₅IN₂Pt: C 20.45, H 3.78. Found: C 20.60, H 3.64. ¹H NMR (C₆D₆, 300 MHz, 23 °C): δ 1.09 (d, ²J_{HPt} = 64 Hz, ${}^{4}J_{\rm HF}$ = 2 Hz, 3H, PtCH₃), 1.34–1.55 (m, 2H, CH₂), 1.39 (s, ${}^{3}J_{\text{HPt}} = 18$ Hz, 3H, NCH₃), 1.82 (s, ${}^{2}J_{\text{HPt}} = 70$ Hz, 3H, PtCH₃), 1.87 (s, ${}^{3}J_{HPt} = 13$ Hz, 3H, NCH₃), 1.97–2.18 (m, 2H, CH₂), 2.74 (s, ${}^{3}J_{HPt} = 15$ Hz, 3H, NCH₃), 3.01 (s, ${}^{3}J_{HPt} = 10$ Hz, 3H, NCH₃). ¹⁹F NMR (C₆D₆, 282.2 MHz, 23 °C): δ -83.7 (d, ${}^{2}J_{\rm FPt} = 331$ Hz, ${}^{2}J_{\rm FF} = 252$ Hz, CF), -77.3 (s, CF₃), -70.2 (d, ${}^{2}J_{\rm FF} = 252$ Hz, ${}^{2}J_{\rm FPt} = 245$ Hz, CF).

[(TMEDA)Pt(n-C₃F₇)(CH₃)₂(OH₂)]BF₄ (11). On addition of toluene (15 mL) to a mixture of (TMEDA)Pt(n-C₃F₇)(CH₃)₂I (0.101 g, 0.158 mmol) and AgBF₄ (0.045 g, 0.23 mmol) a pale yellow suspension was formed. The mixture was stirred for 16 h and then filtered through Celite, which was washed further with CH₂Cl₂. The solvent was removed in vacuo from the resultant filtrate to give a white solid, which was washed with CHCl₃. Yield: 0.088 g, 90%. Anal. Calcd for C₁₁H₂₄BF₁₁N₂-OPt: C, 21.48; H, 3.93; N, 4.55. Found: C, 21.63; H, 4.36; N, 4.42. ¹H NMR (CD₂Cl₂, 300 MHz, 23 °C): δ 1.34 (s, 3H, ${}^{2}J_{\rm HPt} = 76$ Hz, PtMe), 1.34 (s, 3H, ${}^{2}J_{\rm HPt} = 66$ Hz, PtMe), 2.49 (s, 3H, ${}^{3}J_{HPt} = 22.5$ Hz, NMe), 2.58 (s, 3H, ${}^{3}J_{HPt} = 14.4$ Hz, NMe), 2.66-3.22 (m, 10H, NMe and CH₂). ¹⁹F NMR (CD₂Cl₂, 282.2 MHz, 23 °C): δ –149.9 (s, BF₄), –121.3 (dd, ²J_{FF} = 289 Hz, ${}^{3}J_{\text{FF}} = 14$ Hz, β -CF), -119.9 (d, ${}^{2}J_{\text{FF}} = 289$ Hz, β -CF), -91.8 $(ddq, {}^{2}J_{FF} = 272 Hz, {}^{3}J_{FF} = 14 Hz, {}^{4}J_{FF} = 13 Hz, {}^{2}J_{FPt} = 389$ Hz, α -CF), -89.3 (dm, ${}^{2}J_{FF} = 272$ Hz, ${}^{2}J_{FPt} = 220$ Hz, α -CF), -80.1 (t, ${}^{4}J_{\text{FF}} = 13$ Hz, ${}^{4}J_{\text{FPt}} = 16$ Hz, CF₃).

(TMEDA)Pt(n-C₃F₇)(CH₃)₂Cl (12). Addition of CH₂Cl₂ (15) mL) to a mixture of (TMEDA)Pt(n-C₃F₇)(CH₃)₂I (0.200 g, 0.319 mmol) and AgBF₄ (0.080 g, 0.411 mmol) gave a yellow precipitate of AgI. The mixture was stirred for 1 h, and then a solution of NaCl (0.3 g, excess) in EtOH/H₂O was added. After stirring for 30 min the volatiles were removed in vacuo and the solid residue was extracted into CH₂Cl₂ and then filtered through Celite. Removal of solvent in vacuo gave a white solid. Yield: 0.165 g, 96%. Anal. Calcd for C₁₁H₂₂ClF₇N₂-Pt: C, 24.20; H, 4.06; N, 5.13. Found: C, 23.98; H, 4.13; N, 5.07. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 1.12 (d, 3H, ⁴J_{HF} = 2.7 Hz, ${}^{2}J_{HPt} = 69$ Hz, PtMe), 1.36 (s, 3H, ${}^{2}J_{HPt} = 69$ Hz, PtMe), 2.43 (s, 3H, ${}^{3}J_{HPt} = 19.5$ Hz, NMe), 2.54 (s, 3H, ${}^{3}J_{HPt} = 12.6$ Hz, NMe), 2.84 (s, 3H, ${}^{3}J_{HPt} = 13.5$ Hz, NMe), 2.99 (s, 3H, ${}^{3}J_{\rm HPt}$ = 8.4 Hz, NMe), 2.38–3.14 (m, 4H, CH₂). ${}^{19}{\rm F}$ NMR (CDCl₃, 282.2 MHz, 23 °C): δ –121.1 (dd, ²J_{FF} = 289 Hz, ${}^{3}J_{\text{FF}} = 13$ Hz, β -CF), -119.0 (ddd, ${}^{2}J_{\text{FF}} = 289$ Hz, ${}^{3}J_{\text{FF}} = 12$ Hz, ${}^{3}J_{\text{FF}} = 8$ Hz, β -CF), -86.6 (ddq, ${}^{2}J_{\text{FF}} = 270$ Hz, ${}^{3}J_{\text{FF}} = 12$ Hz, ${}^{4}J_{FF} = 13.5$ Hz, ${}^{2}J_{FPt} = 388$ Hz, α -CF), -83.2 (dddq, ${}^{2}J_{\rm FF} = 270$ Hz, ${}^{3}J_{\rm FF} = 13$ Hz, ${}^{3}J_{\rm FF} = 8$ Hz, ${}^{4}J_{\rm FF} = 15$ Hz, $^{2}J_{\mathrm{FPt}} = 246$ Hz, α -CF), -79.7 (dd, $^{4}J_{\mathrm{FF}} = 13.5$ Hz, $^{4}J_{\mathrm{FF}} = 15$ Hz, ${}^{4}J_{\rm FPt} = 19$ Hz, CF₃).

(TMEDA)Pt(*n*-**C**₃**F**₇**)**(**CH**₃**)** (**9a**). To a solution of (TMEDA)-Pt(*n*-C₃**F**₇**)**(CH₃)₂I (0.105 g, 0.165 mmol) in moist acetone (15 mL) was added Et₃N (2 mL, excess) and the pale yellow solution stirred for 16 h. The solvent was removed in vacuo and the resultant solid treated with Et₂O. The white precipi-

tate of (Et₃NMe)I was removed by filtration and the resultant filtrate reduced in vacuo to afford a yellow solid. Yield: 0.082 g, 99%. Anal. Calcd for C₁₀H₁₉F₇N₂Pt: C, 24.25; H, 3.84; N, 5.65. Found: C, 24.22; H, 3.84; N, 5.65. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 0.50 (tt, ${}^{4}J_{\rm HF} = {}^{5}J_{\rm HF} = 1.5$ Hz, 3H, ${}^{2}J_{\rm HPt} =$ 86.1 Hz, PtMe), 2.64 (s, 6H, ${}^{3}J_{HPt} = 26.1$ Hz, NMe), 2.54–2.73 (m, 4H, CH₂), 2.77 (s, 6H, ${}^{3}J_{HPt} = 18$ Hz, NMe). ¹H NMR (CD₂-Cl₂, 500 MHz, -70 °C): δ 0.25 (s, 3H, PtMe), 2.24 (br d, $J_{\rm HH} = 11$ Hz, 1H, CH₂), 2.41 (br d, $J_{\rm HH} = 11$ Hz, 1H, CH₂), 2.56 (s, 6H, NMe), 2.66 (s, 6H, NMe), 2.83 (br t, $J_{\rm HH}=13$ Hz, 1H, CH₂), 2.92 (br t, $J_{\rm HH}$ = 13 Hz, 1H, CH₂). ¹⁹F NMR (CDCl₃, 300 MHz, 23 °C): δ -118.2 (s, ${}^{3}J_{\text{FPt}} = 118$ Hz, β -CF₂), -90.3 (br s, ${}^{2}J_{FPt} = 429$ Hz, α -CF₂), -79.7 (t, ${}^{4}J_{FF} = 11$ Hz, ${}^{4}J_{FPt} =$ 36 Hz, CF₃). ¹⁹F NMR (CD₂Cl₂, 470.4 MHz, -70 °C): $\delta -117.9$ (d, ${}^{2}J_{FF} = 284$ Hz, β -CF), -114.8 (d, ${}^{2}J_{FF} = 284$ Hz, β -CF), -92.1 (d, ${}^{2}J_{\rm FF} = 272$ Hz, ${}^{2}J_{\rm FPt} = 285$ Hz, α -CF), -86.6 (d, ${}^{2}J_{\rm FF} = 272$ Hz, ${}^{2}J_{\rm FPt} = 535$ Hz, α -CF), -77.8 (t, ${}^{4}J_{\rm FF} = 10.5$ Hz, CF₃).

(TMEDA)Pt(C₂F₅)(CH₃) (9b). To a solution of (TMEDA)-Pt(C₂F₅)(CH₃)₂I (0.101 g, 0.172 mmol) in acetone (20 mL) was added Et₃N (2.0 mL, 14 mmol). The colorless solution was stirred overnight under reflux. The solution was cooled to room temperature, and the volatiles were removed in vacuo to yield a white solid. The solid was extracted into Et₂O and filtered through Celite. The filtrate was collected, and the volatiles were removed in vacuo to yield the product as a white solid (0.070 g, 91%). Anal. Calcd for C₉H₁₉F₅N₂Pt: C 24.27, H 4.30. Found: C 24.17, H 4.20. ¹H NMR (C₆D₆, 300 MHz, 23 °C): δ 0.97 (tq, ²J_{HPt} = 88 Hz, ⁴J_{HF} = 1 Hz, ⁵J_{HF} = 1 Hz, 3H, PtCH₃), 1.34–1.44 (m, 4H, CH₂CH₂), 1.80 (s, ³J_{HPt} = 25 Hz, 6H, NCH₃), 2.27 (s, ³J_{HPt} = 18 Hz, 6H, NCH₃). ¹⁹F NMR (C₆D₆, 282.2 MHz, 23 °C): δ -93.6 (s, ²J_{FPt} = 426 Hz, CF₂), -81.0 (s, ³J_{FPt} = 65 Hz, CF₃).

(TMEDA)Pt(*n*-C₃F₇)(CH₃)I₂ (13). Addition of hexanes (15 mL) to a mixture of (TMEDA)Pt(*n*-C₃F₇)(CH₃) (0.200 g, 0.404 mmol) and I₂ (0.103 g, 0.406 mmol) followed by stirring for 3 h gave an orange-brown precipitate in a purple solution. The solid was collected on a glass frit and washed repeatedly with hexanes. Yield: 0.249 g, 82%. Anal. Calcd for C₁₀H₁₉F₇I₂N₂Pt: C, 16.03; H, 2.56; N, 3.74. Found: C, 16.13; H, 2.46; N, 3.65. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 2.87 (t, ²J_{HF} = 2.1 Hz, 3H, ²J_{HPt} = 71.7 Hz, PtMe), 2.87–3.05 (m, 4H, CH₂), 3.29 (s, 6H, ³J_{HPt} = 18.0 Hz, NMe), 3.31 (s, 6H, ³J_{HPt} = 12.6 Hz, NMe). ¹⁹F NMR (CDCl₃, 282.2 MHz, 23 °C): δ -116.0 (s, β -CF₂), -79.4 (t, ⁴J_{FF} = 13 Hz, ⁴J_{FPt} = 15 Hz, CF₃), -48.8 (q, ⁴J_{FF} = 13 Hz, ²J_{FPt} = 251 Hz, α -CF₂). Crystals for the structure determination were obtained from CH₂Cl₂/heptane as dark red blocks.

(TMEDA)Pt(n-C₃F₇)I (14). Addition of moist CH₂Cl₂ (15 mL) to a mixture of (TMEDA)Pt(C₃F₇)(CH₃)I₂ (0.194 g, 0.259 mmol) and $AgBF_4$ (0.111 g, 0.570 mmol) gave a pale yellow precipitate in a colorless solution. The mixture was stirred for 30 min, and then a solution of NaI (0.20 g, excess) in H₂O (5 mL) was added and the resultant slurry stirred for 90 min. The organic layer was separated, dried over anhydrous Na₂-SO₄, and filtered through Celite to give pale yellow solution. Removal of solvent in vacuo afforded a yellow solid. Yield: 0.146 g, 93%. Anal. Calcd for C₉H₁₆F₇IN₂Pt: C, 17.80; H, 2.66; N, 4.61. Found: C, 17.95; H, 2.63; N, 4.59. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 2.62-2.76 (m, 4H, CH₂), 2.92 (brs, 6H, ${}^{3}J_{\rm HPt} = 17.4$ Hz, NMe), 2.98 (br s, 6H, ${}^{3}J_{\rm HPt} = 45.0$ Hz, NMe). ¹H NMR (toluene- d_8 , 500 MHz, -70 °C): δ 0.53 (br d, $J_{\rm HH}$ = 12 Hz, CH₂), 0.72 (br d, $J_{\rm HH} = 12$ Hz, 1H, CH₂), 1.66 (br t, $J_{\rm HH} = 12$ Hz, 1H, CH₂), 1.93 (br t, $J_{\rm HH} = 12$ Hz, 1H, CH₂), 1.98 (br s, 3H, NMe), 2.19 (br s, 3H, NMe), 2.28 (br s, 3H, NMe), 2.81 (br s, 3H, NMe). $^{19}\mathrm{F}$ NMR (CDCl₃, 282.2 MHz, 23 °C): δ –113.0 (br s, β -CF₂), –79.8 (t, ${}^{3}J_{\rm FPt}$ = 11 Hz, CF₃). ${}^{19}{\rm F}$ NMR (toluene- d_8 , 470.4 MHz, -60 °C): δ -114.6 (d, $^2J_{\rm FF}$ = 283 Hz, β -CF), -110.9 (d, ${}^{2}J_{FF}$ = 283 Hz, β -CF), -94.2 (d, $^{2}J_{\rm FF}$ = 262 Hz, α -CF), -78.9 (m, CF₃), -64.4 (d, $^{2}J_{\rm FF}$ = 262 Hz, α-CF).

[(TMEDA)Pt(*n*-C₃F₇)(OH₂)**]**O₃SCF₃ (17). Addition of CF₃-SO₃H (0.020 mL, 0.226 mmol) to a solution of (TMEDA)Pt(*n*-C₃F₇)(CH₃) (0.100 g, 0.202 mmol) in CH₂Cl₂ (15 mL) gave a pale yellow solution, which was stirred for 2 h. Removal of volatiles in vacuo gave a white solid, which was washed with CHCl₃. Yield: 0.050 g, 38%. Anal. Calcd for C₁₀H₁₈F₁₀N₂O₄-PtS: C, 18.55; H, 2.80; N, 4.30. Found: C, 18.73; H, 2.72; N, 4.31. ¹H NMR (acetone-*d*₆, 300 MHz, 23 °C): δ 2.83 (s, 6H, NMe), 3.04 (s, 6H, NMe), 3.02–3.15 (m, 4H, CH₂). ¹⁹F NMR (acetone-*d*₆, 282.2 MHz, 23 °C): δ –119.8 (s, ³*J*_{FPt} = 48 Hz, β-CF₂), –99.8 (s, ²*J*_{FPt} = 260 Hz, α-CF₂), –80.6 (t, ³*J*_{FF} = 11 Hz, CF₃), –79.3 (s, SO₃CF₃).

(TMEDA)Pt(n-C₃F₇)H (18). Addition of EtOH (10 mL) to a mixture of (TMEDA)Pt(n-C₃F₇)I (0.092 g, 0.152 mmol) and NaBH₄ (0.2 g, excess) and stirring for 1 h gave a colorless suspension. Removal of volatiles followed by extraction into toluene and filtration through Celite gave a colorless solution, which was reduced in vacuo to a white solid. Yield: 0.070 g, 96%. Anal. Calcd for C₉H₁₇F₇N₂Pt: C, 22.46; H, 3.56; N, 5.82. Found: C, 22.24; H, 3.43; N, 5.76. ¹H NMR (C₆D₆, 300 MHz, 23 °C): δ –20.96 (br s, 1H, $^1\!J_{\rm HPt}$ = 1734 Hz, PtH), 1.36–1.48 (m, 4H, CH₂), 2.12 (s, 6H, ³J_{HPt} = 32.1 Hz, NMe), 2.29 (s, 6H, ${}^{3}J_{\rm HPt}$ = 18.3 Hz, NMe). ${}^{19}{\rm F}$ NMR (C₆D₆, 282.2 MHz, 23 °C): δ -119.9 (d, ${}^{4}J_{\rm FH} = 4$ Hz, ${}^{3}J_{\rm FPt} = 233$ Hz, β -CF₂), -88.2 (q, ${}^{4}J_{\rm FF} = 10.5$ Hz, ${}^{2}J_{\rm FPt} = 402$ Hz, α -CF₂), -78.3 (t, ${}^{4}J_{\rm FF} = 10.5$ Hz, ${}^{4}J_{FPt} = 60$ Hz, CF₃). ${}^{19}F$ NMR (CD₂Cl₂, 470.4 MHz, -75 °C): $\delta - 118.7$ (d, ${}^{2}J_{\text{FF}} = 279$ Hz, ${}^{3}J_{\text{FPt}} = 235$ Hz, β -CF), -117.8(d, ${}^{2}J_{\rm FF} = 279$ Hz, ${}^{3}J_{\rm FPt} = 238$ Hz, β -CF), -88.5 (br d, ${}^{2}J_{\rm FF} =$ 276 Hz, $^2J_{\rm FPt}$ = 328 Hz, $\alpha\text{-CF}),~-87.1$ (br d, $^2J_{\rm FF}$ = 276 Hz, ${}^{2}J_{\text{FPt}} = 384$ Hz, α -CF), -77.2 (t, ${}^{4}J_{\text{FF}} = 10$ Hz, CF₃). Crystals for the structure determination were grown from Et₂O/heptane as colorless prisms.

(**DPPE**)**Pt**(*n*-**C**₃**F**₇)(**CH**₃) (19). A solution of (TMEDA)Pt-(*n*-*C*₃**F**₇)Me (1.00 g, 2.02 mmol) and DPPE (0.808 g, 2.03 mmol) in toluene (10 mL) was heated under reflux for 3 h. The resultant colorless solution was reduced in vacuo to a white solid, which was collected on a glass frit and washed with EtOH and then hexanes. Yield: 1.47 g, 93%. Anal. Calcd for $C_{30}H_{27}F_7P_2Pt$: C, 46.34; H, 3.50. Found: C, 46.20; H, 3.45. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 0.63 (t, ³*J*_{HP} = 7.2 Hz, 3H, ²*J*_{HPt} = 84 Hz, PtMe), 2.11–2.24 (m, 4H, CH₂), 7.37–7.51 (m, 12H, Ph), 7.62–7.69 (m, 8H, Ph). ¹⁹F NMR (CDCl₃, 282.2 MHz, 23 °C): δ –119.5 (s, ³*J*_{FPt} = 84 Hz, β -CF₂), –88.1 (m, ²*J*_{FPt} = 366 Hz, α -CF₂), –80.1 (t, ⁴*J*_{FF} = 10 Hz, ⁴*J*_{FPt} = 27 Hz, CF₃). ³¹P{¹H} NMR (CDCl₃, 121.4 MHz, 23 °C): δ 45.6 (t, ³*J*_{PF} = 28.8 Hz, ¹*J*_{PPt} = 2101 Hz), 49.1 (t, ³*J*_{PF} = 33.4 Hz, ¹*J*_{PPt} = 1779 Hz).

(DPPE)Pt(n-C₃F₇)OT_f (20). Addition of CF₃SO₃H (0.046 g, 0.307 mmol) to a solution of $(DPPE)Pt(n-C_3F_7)(CH_3)$ (0.200 g, 0.257 mmol) in CH₂Cl₂ (15 mL) and stirring for 16 h gave a pale yellow solution, which was reduced in vacuo to a yellow oil. Dissolution in CH₂Cl₂ and filtration through Celite, followed by addition of toluene and removal of the CH₂Cl₂ in vacuo, gave a white precipitate, which was collected on a glass frit and washed with toluene. Yield: 0.225 g, 94%. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a CH_2Cl_2 solution. (dppe)Pt(C_3F_7)OT_f (**20**): Anal. Calcd for C30H24F10P2O3PtS: C, 39.53; H, 2.65. Found: C, 39.60; H, 2.61. ¹H NMR (CD₂Cl₂, 300 MHz, 23 °C): δ 2.04-2.55 (m, 4H, CH₂), 7.50-7.68 (m, 12H, Ph), 7.74-7.85 (m, 8H, Ph). ¹⁹F NMR (CD₂Cl₂, 282.2 MHz, -20 °C): δ -118.4 (s, β -CF₂), -91.8 (s, ²J_{FPt} = 325 Hz, α -CF₂), -78.9 (s, CF₃), -76.5 (br, s, SO₃CF₃). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 121.4 MHz, -30 °C): δ 36.1 (m, ¹J_{PPt} = 4651 Hz), 46.0 (br t, ³J_{PF} = 29 Hz, ¹J_{PPt} = 1963 Hz). [(dppe)Pt(C₃F₇)(OH₂)]OT_f (21): ¹H NMR (CD₂Cl₂, 300 MHz, -20 °C): δ 2.12-2.21 (m, 2H, CH₂), 2.35-2.45 (m, 2H, CH₂), 7.51-7.77 (m, 20H, Ph). ¹⁹F NMR (CD₂Cl₂, 282.2 MHz, -20 °C): δ -118.9 (s, β -CF₂), -96.1 (s, ²J_{FPt} = 310 Hz, α -CF₂), -78.6 (br, s, CF₃), -77.6 (s, O₃SCF₃). ³¹P{¹H} NMR (CD₂Cl₂, 121.4 MHz, -40 °C): δ 34.5 (td, ${}^{3}J_{PF} = 13.0$ Hz, ${}^{2}J_{PP} = 5.3$ Hz, ${}^{1}J_{PPt} = 4409$ Hz), 46.8 (br t, ${}^{3}J_{PF} = 29$ Hz, ${}^{1}J_{PPt} = 1969$ Hz).

(DPPE)Pt(*n*-C₃F₇)I (22). Method A. To a solution of (DPPE)Pt(*n*-C₃F₇)OT_f (0.123 g, 0.132 mmol) in moist CH₂Cl₂ was added a solution of NaI (0.19 g, excess) in H₂O (5 mL). The resultant colorless emulsion was stirred for 16 h. Separation of the organic layer followed by drying over MgSO₄ and filtration through Celite gave a colorless solution. Removal of solvent in vacuo gave a white solid, which was washed with EtOH and hexanes. Yield: 0.114 g, 97%. Anal. Calcd for C₂₉H₂₄F₇IP₂Pt: C, 39.16; H, 2.70. Found: C, 38.92; H, 2.74. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ 2.03–2.15 (m, 4H, CH₂), 7.45–7.57 (m, 12H, Ph), 7.72–7.79 (m, 8H, Ph). ¹⁹F NMR (CDCl₃, 282.2 MHz, 23 °C): δ –114.8 (s, ³*J*_{FPt} = 56 Hz, β -CF₂), -80.2 (t, ⁴*J*_{FF} = 9.5 Hz, CF₃), -79.4 (m, ²*J*_{FPt} = 366 Hz, α -CF₂). ³¹P{¹H</sup> NMR (CDCl₃, 121.4 MHz, 23 °C): δ 40.3 (t, ³*J*_{PF} = 29 Hz, ¹*J*_{PPt} = 1785 Hz), 42.5 (td, ³*J*_{FF} = 28 Hz, ²*J*_{PP} = 4.5 Hz, ¹*J*_{PPt} = 3806 Hz).

Method B. A suspension of ((DPPE)Pt(n-C₃F₇)(CH₃) (0.100 g, 0.129 mmol) and I₂ (0.033 g, 0.130 mmol) in hexanes (15 mL) was stirred for 16 h. The resultant white precipitate was collected by filtration and then recrystallized from CH₂Cl₂/ EtOH. Yield: 0.088 g, 77%.

(DPPE)Pt(n-C₃F₇)H (23). To a solution of (DPPE)Pt(n-C₃F₇)I (0.114 g, 0.128 mmol) in CH₂Cl₂ (15 mL) was added a solution of NaBH₄ (0.15 g, excess) in EtOH (5 mL) and the resultant suspension stirred for 30 min. The solid residue was extracted into Et₂O and filtered through Celite. Removal of solvent in vacuo gave a white solid, which was washed with EtOH and hexanes. Yield: 0.092 g, 94%. Anal. Calcd for C₂₉H₂₅F₇P₂Pt: C, 45.62; H, 3.27. Found: C, 45.35; H, 3.26. ¹H NMR (CDCl₃, 300 MHz, 23 °C): δ –2.81 (ddtt, ²*J*_{HP} = 189 Hz, ${}^{2}J_{\rm HP} = 15$ Hz, ${}^{3}J_{\rm HF} = 8.0$ Hz, ${}^{4}J_{\rm HF} = 7.0$ Hz, 1H, ${}^{1}J_{\rm PtH} = 1209$ Hz, PtH), 2.20-2.40 (m, 4H, CH2), 7.38-7.45 (m, 12H, Ph), 7.60-7.70 (m, 4H, Ph), 7.75-85 (m, 4H, Ph). ¹⁹F NMR (CDCl₃, 282.2 MHz, 23 °C): δ –121.1 (dd, ${}^{4}J_{\rm FP}$ = 7 Hz, ${}^{4}J_{\rm FH}$ = 7 Hz, ${}^{3}J_{\rm FPt} = 152$ Hz, β -CF₂), -83.3 (ddqd, ${}^{3}J_{\rm FP} = 33$ Hz, ${}^{3}J_{\rm FP} = 32$ Hz, ${}^{4}J_{FF} = 10$ Hz, ${}^{3}J_{FH} = 8$ Hz, ${}^{2}J_{FPt} = 379$ Hz, α -CF₂), -79.2 (t, ${}^{4}J_{FF} = 10$ Hz, ${}^{4}J_{FPt} = 40$ Hz, CF₃). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 121.4 MHz, 23 °C): δ 49.0 (t, ${}^{3}J_{PF} = 33$ Hz, ${}^{1}J_{PtP} = 2043$ Hz), 50.7 (tt, ${}^{3}J_{PF} = 32$ Hz, ${}^{4}J_{PF} = 7$ Hz, ${}^{1}J_{PtP} = 1812$ Hz). The latter resonance has the large coupling to the hydride resonance and is consequently that of the phosphorus *trans* to H.

Crystallographic Structural Determinations. Crystal, data collection, and refinement parameters are collected in Table 1. The systematic absences in the diffraction data are uniquely consistent for the reported space groups. Compound **23** crystallized with two independent molecules in the asymmetric unit. The structures were solved using direct methods, completed by subsequent difference Fourier syntheses, and refined by full-matrix least-squares procedures. DIFABS absorption corrections were applied to all structures. All nonhydrogen atoms were refined with anisotropic displacement coefficients, and hydrogen atoms were treated as idealized contributions.

All software and sources of the scattering factors are contained in the SHELXTL (5.10) program library.

Acknowledgment. R.P.H. is grateful to the National Science Foundation and to the Petroleum Research Fund, administered by the American Chemical Society for generous financial support.

Supporting Information Available: Atomic fractional coordinates, bond distances and angles, and anisotropic thermal parameters for complexes **6a**, **9a**, **9b**, **10**, **13**, **18**, **19**, **20**, and **23** are available free of charge via the Internet at http://pubs.acs.org.

OM010424H