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HIV-1 replication inhibitors of the styrylquinoline class:
incorporation of a masked diketo acid pharmacophore
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Abstract—A novel variant of HIV-1 replication inhibitors of the styrylquinoline class, bearing an �-keto acid appendage at C-7,
has been synthesized. Though completely inactive in in vitro experiments against HIV-1 integrase, this compound exhibited a
significant antiviral activity (IC50=10 �M). © 2001 Elsevier Science Ltd. All rights reserved.

AIDS is essentially a viral disease and should be treated
with antiretroviral agents. Although the advent of com-
bination therapy with reverse transcriptase and
protease inhibitors has made it possible to suppress the
replication of HIV-1 in infected individuals, the virus
persists in reservoirs such as peripheral blood mononu-
clear cells or resting T-lymphocytes. Moreover, the
capability of HIV to evolve drug resistance and the
cytotoxicity of present regimens make the third enzyme,
the integrase (IN), a legitimate new drug target.1

We have recently reported that polyhydroxylated
styrylquinolines, exemplified by 1, are potent HIV-1 IN
inhibitors in in vitro experiments, block the replication
of HIV-1 in cell culture, and are devoid of cytotoxicity.2

Although the exact mechanism by which drug 1 and
analogs exert their inhibitory potency remains
unknown, their salicylic acid part has been identified as
a possible pharmacophore which binds Mg2+, a cation
which is essential to the catalytic activity of HIV-1 IN.3

In addition to styrylquinolines, two other families of

Figure 1.
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HIV-1 IN inhibitors have shown anti-HIV-1 activity in
cell culture, namely L-chicoric acid (2) and analogs,4

and various �,�-diketo acids (exemplified by L 731,988,
3).5

In the course of our ongoing research on HIV-1 replica-
tion inhibitors of the styrylquinoline class, we recently
envisioned to elaborate the new structural variant 4,
bearing an �-keto acid appendage at C-7. The factor
that has stimulated our interest in synthesizing
styrylquinoline 4 has been the structural analogy
between its HOOC-CO-C�C(OH)- system and the enol
form of the �,�-diketo acid pharmacophore found in
inhibitor 3 (Fig. 1). On the other hand, a docking
protocol using the program MORCAD has recently
been designed to study the interaction between the
catalytic core of HIV-1 IN and molecules 1 and 4.6 This
computer simulation revealed that the two styrylquino-
lines bind in a similar fashion to the protein. Since drug
1 was proved to be a strong inhibitor of HIV-1 IN,2 a
significant in vitro HIV-1 IN inhibitory activity was
therefore expected for compound 4.

Here, we report the synthesis and the evaluation of the
biological activity of styrylquinoline 4. Structurally,
compound 4 only differs from lead inhibitor 1 in the
presence of an additional keto group at C-7. Two
strategies have evolved for the introduction of this

critical moiety. The keto group could be present at the
outset of the synthesis on a quinoline ring, or incorpo-
rated at an advanced stage, via the displacement of the
ester function of a styrylquinoline (e.g. 10) with an
appropriate nucleophile. The second approach, which
has been more successful thus far, has taken advantage
of the one-carbon elongation of esters developed by
Degani and Fochi, using the anion of tris-
(methylthio)methane (11).7

The first stage of the synthesis was the methylation of
known hydroxy acid 58 to produce the dimethylated
derivative 69 (MeI–K2CO3, DMF–acetone, 12 h at
50°C, 81% yield). Perkin-type condensation of quinal-
dine 6 with 3,4-dihydroxybenzaldehyde (7) then
afforded styrylquinoline 8 (Ac2O, 12 h at 140°C, 79%
yield).2 Replacement of the two labile acetoxy groups of
compound 8 by more robust tert-butyldimethylsilyl
ethers (OTBDMS) was next accomplished, employing
the following two-step procedure. Hydrolysis of 8 (pyr-
idine–H2O, 3 h at 100°C) gave with a 74% yield cate-
chol 9,10 which was converted into bis-silylated
derivative 10 (TBDMSCl, imidazole, DMF, 12 h at
20°C, 84% yield). At this juncture, we stood ready to
introduce the crucial keto group at C-7. In the event,
condensation of ester 10 with tris(methyl-
thio)methyllithium7 (i: 11, n-BuLi, THF, 2 h at −95°C;
ii: 10, 30 min at −95°C; iii: H2O/CH2Cl2 at −95°C)

Scheme 1.
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4. (a) King, P. J.; Ma, G.; Miao, W.; Jia, Q.; McDougall,
B. R.; Reinecke, M. G.; Cornell, C.; Kuan, J.; Kim, T.
R.; Robinson, Jr., W. E. J. Med. Chem. 1999, 42, 497–
509; (b) King, P. J.; Robinson, Jr., W. E. J. Virol. 1998,
72, 8420–8424.

5. Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Still-
mock, K.; Grobler, J. A.; Espeseth, A.; Gabryelski, L.;
Schleif, W.; Blau, C.; Miller, M. D. Science 2000, 287,
646–650.

6. Le Bret, M. et al., manuscript in preparation (see also
Ref. 3).

7. Barbero, M.; Cadamuro, S.; Degani, I.; Dughera, S.;
Fochi, R. J. Org. Chem. 1995, 60, 6017–6024.

8. Meek, W. H.; Fuschman, C. H. J. J. Chem. Eng. Data
1969, 14, 388–391.

9. Compound 6: Colorless crystals; mp 33–34°C; IR (neat,
cm−1) � : 1709, 1610, 1556, 1505; 1H NMR (DMSO-d6,
200 MHz) � : 7.90 (d, J=8.4 Hz, 1H), 7.66 (d, J=8.5
Hz, 1H), 7.39 (d, J=8.5 Hz, 1H), 7.21 (d, J=8.4 Hz,
1H), 4.18 (s, 3H), 3.90 (s, 3H), 2.65 (s, 3H); 13C NMR
(CDCl3, 50 MHz), � : 166.6 (C), 158.6 (C), 156.2 (C),
142.3 (C), 135.7 (CH), 129.5 (C), 125.4 (CH), 123.2 (C),
123.1 (CH), 122.2 (CH), 63.1 (CH3), 51.8 (CH3), 25.1
(CH3).

10. Compound 9: Yellow solid; mp 180–185°C (dec.); IR
(neat, cm−1) � : 3340, 2946, 1722, 1631, 1600, 1508; 1H
NMR (DMSO-d6, 200 MHz) � : 9.20 (broad s, 2H), 8.30
(d, J=9.1 Hz, 1H), 7.86 (d, J=9.1 Hz, 1H), 7.75–7.55
(m, 3H), 7.16 (d, J=16.8 Hz, 1H), 7.10 (s, 1H), 7.00 (d,
J=7.9 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 4.20 (s, 3H),
3.98 (s, 3H); 13C NMR (DMSO-d6, 50 MHz) � : 166.6
(C), 156.0 (C), 155.5 (C), 147.0 (C), 145.7 (C), 142.3 (C),
136.6 (CH), 135.4 (CH), 130.1 (C), 127.8 (C), 125.2
(2CH), 124.0 (C), 122.9 (CH), 121.3 (CH), 120.1 (CH),
116.0 (CH), 114.1 (CH), 63.0 (CH3), 52.3 (CH3).

11. Compound 12: Orange solid; mp 158–160°C; IR (neat,
cm−1) � : 2930, 2857, 1688, 1505, 1286, 1250; 1H NMR
(CDCl3, 200 MHz) � : 8.09 (d, J=8.4 Hz, 1H), 7.93 (d,
J=8.2 Hz, 1H), 7.65 (d, J=8.4 Hz, 1H), 7.60 (d, J=
16.2 Hz, 1H), 7.46 (d, J=8.2 Hz, 1H), 7.21 (d, J=16.2
Hz, 1H), 7.15–7.05 (m, 2H), 6.84 (d, J=8.6 Hz, 1H),
4.20 (s, 3H), 2.12 (s, 9H), 0.95 (s, 9H), 0.92 (s, 9H), 0.19
(s, 6H), 0.18 (s, 6H); 13C NMR (CDCl3, 50 MHz) � :
193.5 (C), 155.7 (C), 154.2 (C), 147.9 (C), 147.0 (C),
142.3 (C), 136.2 (CH), 134.6 (CH), 132.0 (C), 130.1 (C),
129.3 (C), 126.9 (CH), 125.3 (CH), 121.8 (CH), 121.1
(2CH), 120.2 (CH), 119.7 (CH), 76.8 (C), 64.0 (CH3),
25.8 (6CH3), 18.4 (2C) 14.0 (3CH3), −4.1 (4CH3).

12. Degani, I.; Dughera, S.; Fochi, R.; Gatti, A. Synthesis
1996, 467–469.

13. Compound 13: Yellow solid; mp 129–130°C; IR (neat,
cm−1) � : 2930, 2856, 1672, 1662, 1594, 1506, 1303, 1249;
1H NMR (CDCl3, 200 MHz) � : 8.10 (d, J=8.7 Hz,
1H), 7.72 (d, J=8.4 Hz, 1H), 7.69 (d, J=8.7 Hz, 1H),
7.63 (d, J=16.2 Hz, 1H), 7.53 (d, J=8.4 Hz, 1H), 7.16
(d, J=16.2 Hz, 1H), 7.12–7.02 (m, 2H), 6.85 (d, J=8.8
Hz, 1H), 4.35 (s, 3H), 2.54 (s, 3H), 1.03 (s, 9H), 1.00 (s,
9H), 0.25 (s, 6H) 0.24 (s, 6H); 13C NMR (CDCl3, 50
MHz) � : 193.3, 190.2, 158.7, 155.7, 148.8, 147.1, 142.1,
136.5, 135.1, 132.3, 130.0, 126.4, 125.5, 124.9, 123.1,
121.9, 121.2 (2C), 119.9, 63.9, 26.0 (6C), 18.4, 11.0 (2C),
−4.0 (4C).

Table 1. Biological data of compounds 1, 3 and 4

HIV-1 integrase inhibitory Anti-HIV-1 activityCompound
IC50 (�M)potency (strand transfer

process) IC50 (�M)

11 1
0.13 1

1004 10

delivered with a 57% yield the �-oxo trithioorthoester
12,11 which, upon treatment with N-bromosuccinimide
(NBS, THF–H2O, 2 h at 20°C),12 gave the �-oxo thiol
ester 1313 (52% yield). The next issue of the synthesis
was the conversion of the thiol ester group of 13 into
a carboxylic acid. A variety of operating conditions
were considered (1N NaOH, MeOH, 20°C; or 0.1N
NaOH, t-BuOOH, 20°C; or AgNO3, CH3CN, H2O,
20°C), but they all proved to be inappropriate for the
purpose. Finally, after extensive experiments, it was
discovered that subjection of 13 to harsh hydrolytic
conditions (40% aqueous HBr, AcOH, 12 h at 80°C),
not only achieved the task, but also resulted in the
removal of the aromatic OMe and OTBDMS protect-
ing groups, providing our goal 414 in 47% yield
(Scheme 1).

Keto acid 4 was evaluated in vitro for its inhibitory
activity against HIV-1 IN, and ex vivo for its antiviral
activity against HIV-1 replication in CEM cells.2 The
results, together with those obtained with lead
inhibitors 1 and 3, are listed in Table 1. A moderate
antiviral activity was gained with styrylquinoline 4
(IC50=10 �M). However, in contrast with parent com-
pound 1, this keto acid exhibited a complete lack of in
vitro inhibitory potency (IC50>100 �M). Therefore, in
contradiction with the aforementioned docking stud-
ies,6 the ultimate target of drug 4 in the ex vivo
experiments is not HIV-1 IN. Work directed toward
the identification of this viral target is in progress.
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14. Compound 4: Brick red solid; mp 250°C (dec.); IR (neat,
cm−1) � : 3600–2500, 1740, 1580, 1522, 1442, 1290, 1240;
1H NMR (DMSO-d6, 400 MHz) � : 9.50–8.50 (broad s,
4H), 8.36 (d, J=8.8 Hz, 1H), 8.12 (d, J=15.8 Hz, 1H),
7.89 (d, J=8.8 Hz, 1H), 7.70 (d, J=8.8 Hz, 1H), 7.42 (d,
J=8.8 Hz, 1H), 7.23 (d, J=15.8 Hz, 1H), 7.10 (d, J=1.2
Hz, 1H), 7.00 (dd, J=8.2, 1.2 Hz, 1H), 6.80 (d, J=8.2

Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) � : 186.6 (C),
167.2 (C), 157.2 (C), 155.0 (C), 147.1 (C), 145.6 (C), 138.2
(C), 137.8 (CH), 137.2 (CH), 135.6 (CH), 130.6 (C), 127.8
(C), 124.0 (CH), 123.3 (CH), 120.3 (CH), 118.1 (CH),
116.1 (CH), 115.8 (C), 114.5 (CH); MS (ESI, −70.0 V)
m/z (rel. intensity): 352 (M+1, 2), 351 (M, 20), 350 (M−1,
100), 322 (2), 306 (M−1−CO2, 2), 278 (1).


