CHEMISTRY LETTERS, pp. 1393-1394, 1988.

Mitsunori ONO,* Yoshisada NAKAMURA, Shingo SATO, and Isamu ITOH Ashigara Research Laboratory, Fuji Photo Film Co. Ltd., Minami-Ashigara, 250 01

A regioselective and a practical synthesis of 2,5-di(methylsufonyl)phenol is described on the basis of the reactivity analysis of 2,4-dichloro-methylsulfonylbenzene by use of the HSAB principle.

We have recently developed one of the intramolecular CT type dichroic functional azo dyes¹⁾ exhibiting both an extreme narrow absorption band with a high intensity and a considerable stability.²⁾ These remarkable properties may be induced by both the methylsulfonyl substituents and their relative positions in the phenolic coupling component of <u>lb</u>. In the practical preparation of <u>la</u>, however, a variety of functionalization methods established in the chemistry of aromatic compounds gave unsuccessful results,³⁾ owing to the unfavorable orientation of the methylsulfonyl substituents against the hydroxyl group. In our previous publication,⁴⁾ we have reported an efficient method for the preparation of <u>2</u>. In this paper, we wish to describe a regioselective synthesis of <u>la</u> from <u>2</u> on the basis of the reactivity analysis of two possible sites of <u>2</u> (C₂ and C₄) susceptible of undergoing nucleophilic attack by use of the HSAB principle.⁵⁾

A STO-3G *ab initio* calculation programmed by GAUSIAN 80 on $\underline{2}$ was carried out⁶⁾ in order to estimate the relative reactivity between the C₂ and the C₄. Both the frontier electron densities and the total charge densities in Fig. 1 suggest that the relative affinity between the C₂ and the C₄ toward a hard nucleophile would be similar, whereas that toward a soft one would be favoured on the C₄.

The preliminary results obtained in the hydroxylation reactions were in good accordance with these predictions. That is, treatment of 2 with KOH (1.1 equiv.) in DMSO/H₂O (3:1)⁷⁾ at 100 °C for 3 h led to a nonselective hydroxylation, giving an unseparable mixture of <u>3a</u> and <u>3b</u>(1:1; 96%). In surprising contrast, treatment of <u>2</u> with CH₃CO₂K (2.0 equiv.) in the same solvents afforded <u>3b</u> (mp 104-106 °C),

Fig. 1. coefficients total charge in LUMO. densities.

exclusively in 73% yield with 4 (mp 142-143 °C; 8%). By regarding CH₃CO₂K as a soft

Chemistry Letters, 1988

reagent relative to KOH, the present regioselectivity would be explained in terms of an orbital controlled reaction.⁸⁾ These findings also indicate that the transformation of 2 into la should be started by the introduction of an appropriate soft nucleophile on the C₄ of $\underline{2}$. Treatment of $\underline{2}$ with $\underline{5}$ as a soft synthon of methylsulfonyl group, in DMF/H2O (1:2) at 120 °C for 3 h, gave 6 (mp 124-126 °C) in 81% yield in a regioselective manner:⁹⁾ FD-MS m/z 280 (M⁺); IR (Nujol) 3600-2550(broad), 1720, 1600 cm⁻¹; ¹H-NMR (DMSO-d₆) δ 3.26 (s, 3H, CH₃), 3.85 (s, 2H, -CH₂-), 7.44 (dd, lH, J=1 and 8 Hz, C_5 -H), 7.51 (d, lH, J=1 Hz, C_3 -H), and 7.96 (d, lH, J=8 Hz, C_6 -H). <u>6</u> Was treated with KOH (4.0 equiv.) in DMSO/H₂O (3:1)⁷⁾ at 110 °C for 6 h to give 7 (mp 202-204 °C; 72%). Transformation of 7 into la was accomplished by oxidation of 7 with CH₃CO₃H (3.0 equiv.) in AcOH at 80 °C for 2 h and the subsequent decarboxylation of 8 with NaOH (1.1 equiv.) at 100 °C for 6 h. The reactions proceeded as expected to afford la (mp 224 °C) in 60% yield. Thus, a regioselective and a practical route of the preparation of <u>la</u> was achieved by the reactivity analysis based on the HSAB principle. The overall yield was 35% from 2. The present results also provide a successful example of the prediction of the reactivity toward aromatic compounds containing two electrophilic centers.¹⁰⁾

References

- 1) M. Ono and K. Tamoto, Japan Kokai, 62-85243, 62-153854, and 62-218963 (1987).
- 2) J. Fabian and H. Hartmann, "Light Absorption of Organic Colorants," Springer-Verlag, Berlin (1980).
- 3) M. Ono, Y. Nakamura, S. Sato, and I. Itoh, unpublished data.
- 4) M. Ono, Y. Nakamura, S. Sato, and I. Itoh, Chem. Lett., 1988, 395.
- 5) For a review: M. Ono, Yuki Gosei Kyokai Shi, 38, 243 and 987 (1980).
- For the reported bond lengths of methylsulfonylbenzene: J. Brunvoll, O. Exner,
 I. Hargittal, M. Kolonits, and P. Scharfenberg, J. Mol. Struct., <u>117</u>, 317, (1984).
- 7) T. Masamune, M. Ono, S. Sato, and A. Murai, Tetrahedron Lett., <u>1977</u>, 585: This solvent system is effective to a smooth hydroxylation of aromatic compounds in comparison with the ordinary methods reported.
- 8) G. Klopman, J. Am. Chem. Soc., <u>90</u>, 223 (1968).
- 9) The structure of $\underline{6}$ was confirmed by the direct comparison of the ¹H-NMR spectra with the isomer being prepared independently.
- 10) G. Klopman, "Chemical Reactivity and Reaction Paths," John Willey & Sons (1974).

(Received May 10, 1988)