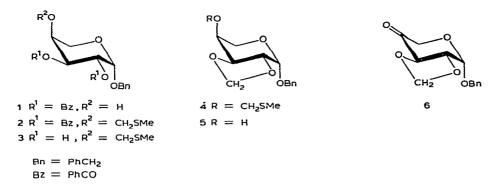
Preliminary communication

Synthesis of methyl 6-deoxy-4-C-(hydroxymethyl)-5-O-methyl-2,3-O-methylene-L-idonate

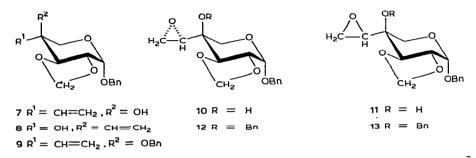
MASAFUMI MATSUZAWA and JUJI YOSHIMURA

Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 227 (Japan)

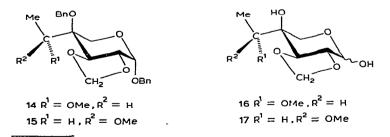

(Received January 26th, 1980; accepted for publication, February 9th, 1980)

As a part of studies on branched-chain sugars, syntheses of such new, branchedchain sugars as D-evermicose¹, D-evalose², and L-evernitrose³ (found in certain oligosaccharide antibiotics, the everninomycins⁴) have been reported from our laboratory. The structure of the remaining, branched-chain sugar lactone, which is linked by an acetal interlinkage⁵ at a terminal position of everninomycins B and D, was recently determined by Ganguly *et al.*⁶ to be 6-deoxy-4-*C*-(hydroxymethyl)-5-*O*-methyl-2,3-*O*-methylene-L-idono-1,4¹-lactone having the (*R*) configuration at C-1. Because the branched-chain sugar lactone was chemically characterized⁷ as the methyl ester (20) of the free acid, the synthesis of 20 from L-arabinose is described in this communication.

Treatment of benzyl 2,3-di-O-benzoyl- β -L-arabinopyranoside⁸ (1) in acetic acid with dimethyl sulfoxide and acetic anhydride gave the corresponding 3-O-(methylthio)-methyl ether (2) as a syrup, $[\alpha]_D$ +176.8° (c 1.24, CHCl₃), in 86% yield; this was O-debenzoylated with sodium methoxide, to give benzyl 3-O-(methylthio)methyl- β -L-arabino-pyranoside (3), m.p. 72–73°, $[\alpha]_D$ +193.9° (c 0.72, CHCl₃), in 57% yield. Treatment of 3 with an excess of dichloromethane and sodium hydride? gave the corresponding 2,3-O-methylene derivative (4) as a syrup, $[\alpha]_D$ +110° (c 1.0, CHCl₃), in 46% yield; this was O-de-(methylthio)methylated with mercuric chloride in the presence of calcium carbonate, to give benzyl 2,3-O-methylene- β -L-arabinopyranoside (5) as a syrup, $[\alpha]_D$ +212° (c 1.6, CHCl₃), in 62% yield. The conformation of 5 was proved by its n.m.r. spectrum to be 4C_1 (L) [δ 7.28–7.40 (m, 5 H, Ph), 5.36 (d, 1 H, $J_{1,2}$ 1.0 Hz, H-1), 5.11 and 5.04 (each d, 2 H, J_{gem} 1.0 Hz, 2,3-O-methylene), 4.75 and 4.64 (ABq, 2 H, J 11.6 Hz, CH₂Ph), 4.30 (m, 1 H, H-4), 3.89 (q, 1 H, $J_{3,4}$ 1.0, $J_{2,3}$ 10.0 Hz, H-3), 3.79 (dd, 1 H, H-2), 3.73 (dd, 1 H, $J_{4,5e}$ 1.8, H-5e), 3.58 (dd, 1 H, $J_{4,5a}$ 2.0, $J_{5a,5e}$ 13.2 Hz, H-5a), and 3.22 (broad s, OH)].


Oxidation of 5 with dimethyl sulfoxide-trifluoroacetic anhydride¹⁰ gave benzyl 2,3-O-methylene- β -L-threo-pentopyranosid-4-ulose (6) in good yield. Compound 6 could not be completely purified, but the n.m.r. spectrum could be analyzed: δ 7.52-7.21 (m, 5 H, Ph), 5.50 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 5 20 and 5.10 (each d, J_{gem} 1.0 Hz, 2,3-O-methylene), 4.86 and 4.76 (ABq, J 11.5 Hz, CH₂Ph), 4.72 (dd, 1 H, $J_{3,5e} \sim$ 1.0 Hz, H-3), 4.02 (dd, 1 H, H-5e), 3.92 (d, 1 H, $J_{5a,5e}$ 15.0 Hz, H-5a), and 3.67 (dd, 1 H, $J_{2,3}$ 10.8 Hz, H-2).

PRELIMINARY COMMUNICATION

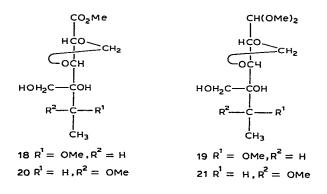

Reaction of 6 with vinylmagnesium bromide in oxolane gave a 4.1:1 mixture of benzyl 2,3-*O*-methylene-4-*C*-vinyl- β -L-arabinopyranoside (7), as a syrup {[α]_D +170° (*c* 1.2, CHCl₃); n.m.r.: δ 7.42-7.24 (m, 5 H, Ph), 5.86 (dd, 1 H, J_{cis} 10.0, J_{trans} 16.7 Hz, CH in vinyl group), 5.53 (dd, 1 H, Jgem 2.0 Hz, trans-H in CH₂ of vinyl group), 5.38 (d, 1 H, J_{1,2} 2.0 Hz, H-1), 5.30 (dd, 1 H, cis-H in CH₂ of vinyl group), 5.15 and 5.07 (each d, 2 H, Jgem 1.0 Hz, 2.3-O-methylene), 4.79 and 4.67 (ABq, 2 H, J 12.2 Hz, CH₂Ph), 3.97 (d, 1 H, J_{2.3} 9.4 Hz, H-3), 3.90 (dd, 1 H, H-2), 3.54 and 3.47 (ABq, 2 H, J 11.0 Hz, H-5e, 5a), and 2.50 (broad s, OH)}, and its 4-epimer (8) (of the α -D-xylo configuration), as a syrup {[α]_D +137° (c 3.0, CHCl₃); n.m.r.: δ 7.41-7.20 (m, 5 H, Ph), 6.12 (dd, 1 H, J_{cis} 11.0, J_{trans} 17.6 Hz, CH in vinyl group), 5.52 (dd, 1 H, J_{gem} 1.8 Hz, trans-H in CH₂ of vinyl group), 5.32 (dd, 1 H, cis-H in CH₂ of vinyl group), 5.26 (d, 1 H, J_{1,2} 3.3 Hz, H-1), 5.09 and 5.03 (each d, Jgem 1.0 Hz, 2,3-O-methylene), 4.76 and 4.63 (ABq, J 12.0 Hz, CH₂Ph), 4.01 (d, 1 H, J_{2,3} 9.2 Hz, H-3), 3.62 and 3.56 (ABq, 2 H, J 10.8 Hz, H-5e, 5a), 3.37 (dd, 1 H, H-2), and 2.96 (broad s, OH) }, in 59% yield; 7 was separated from 8 on a column of silica gel (eluant, 4:1 hexane-ethyl acetate). The configuration at the quarternary carbon atom was determined by comparison of the chemical shifts of the methine carbon atom of the vinyl group [7, δ 137.15 p.p.m. (from Me₄Si); 8, δ 135.15 p.p.m.] in the ¹³C-n.m.r. spectra¹¹. Treatment of 7 with benzyl bromide and sodium hydride gave the corresponding 4-O-benzyl derivative (9) as a syrup, $[\alpha]_{D}$ +101° (c 1.8, CHCl₃), in 89% yield.

Epoxidation of the double bond in 7 with *m*-chloroperoxybenzoic acid in dichloromethane gave a 4.5:1 mixture of benzyl 2,3-*O*-methylene-4-*C*-[(*S*)-oxiran-2-yl]-β-L-arabinopyranoside (11) as a syrup, $[\alpha]_D$ +182° (*c* 0.9, CHCl₃), and the corresponding (*R*) isomer (10) as a syrup, $[\alpha]_D$ +183.2° (*c* 1.1, CHCl₃), in 52% yield. Similar oxidation of 9 gave the corresponding *R* epoxide (12) as a syrup { $[\alpha]_D$ +114.6° (*c* 1.1, CHCl₃); n.m.r.: δ 7.48–7.10 (m, 5 H, Ph), 5.39 (d, 1 H, $J_{1,2}$ 2.0 Hz, H-1), 5.14 and 5.07 (each d, 2 H, J_{gem} 1.0 Hz, 2,3-*O*-methylene), 4.82 and 4.78 (ABq, 2 H, *J* 15.2 Hz, 4-*O*-CH₂Ph), 4.78 and 4.68 (ABq, 2 H, *J* 11.6 Hz, 1-*O*-CH₂Ph), 4.10–3.98 (m, 2 H, H-2,3), 3.95 and 3.58 (ABq, *J* 12.2 Hz, H-5*e*,5*a*), and 3.16, 2.90, and 2.79 (each dd, 3 H, *J* 3.0, 4.0, and 5.0 Hz, epoxy H)}, and the (*S*) epoxide (13) as a syrup { $[\alpha]_D$ +114.7° (*c* 1.1, CHCl₃), n.m.r.: δ 7.50–7.12 (m, 5 H, Ph), 5.34 (d, 1 H, $J_{1,2}$ 2.6 Hz, H-1), 5.08 and 5.04 (each d, 2 H, J_{gem} 0.8 Hz, 2,3-*O*methylene), 4.94 and 4.85 (ABq, 2 H, *J* 11.6 Hz, 4-*O*-CH₂Ph), 4.77 and 4.66 (ABq, 2 H, *J* 12.4 Hz, 1-O-CH₂Ph), 4.00 (dd, 1 H, $J_{2,3}$ 10.0 Hz, H-2), 3.93 (d, 1 H, H-3), 3.78 and 3.66 (ABq, 2 H, J 12.5 Hz, H-5e,5a), and 3.11, 3.04, and 2.83 (each dd, 3 H, J 2.9, 4.2, and 5.0 Hz, epoxy-H) } in the ratio of 1:1, in 65% yield. The difference in the ratio of isomers, as between the products from 7 and 9, indicates the effect of the tertiary hydroxyl group on C-4, as had been observed for 2-cyclohexen-1-ol derivatives¹². The configurations of the epoxides were deduced by comparison of the ratio with that of the products obtained by similar oxidation of the 2,3-di-O-benzyl analog of 7; unexpectedly, their absolute configurations could be determined by a chemical method.*

Reduction of 12 and 13 in oxolane with lithium aluminum hydride gave the corresponding alcohols, which were characterized as the *O*-methyl derivatives: 14, a syrup, $[\alpha]_D$ +123.9° (c 0.8, CHCl₃), 74%; and 15, a syrup, $[\alpha]_D$ +114.5° (c 0.9, CHCl₃), 69%. Hydrogenation of 14 and 15 in the presence of palladium-on-charcoal gave 4-*C*-[(*R*)-1-methoxyethyl]- (16), a syrup, $[\alpha]_D$ -28.7° (c 3.3, EtOH), and 4-*C*-[(*S*)-1-methoxyethyl]- 2,3-*O*-methylene-L-arabinose (17), m.p. 53–57°, $[\alpha]_D$ -44.7° (c 1.9, EtOH), in 93 and 83% yield, respectively.

Oxidation of 16 in 85% aqueous methanol with bromine, treatment with silver oxide, and separation of the products by preparative t.l.c., gave methyl 6-deoxy-4-C-(hydroxy-methyl)-5-O-methyl-2,3-O-methylene-D-gluconate (18) as a syrup (see Table I), together with the dimethyl acetal (19) of 16 as a syrup $\{[\alpha]_D -23.7^\circ (c \ 2.2, \text{CHCl}_3); \text{ n.m.r.: } \delta \ 5.07$ and 4.93 (each s, 2 H, 2,3-O-methylene), 4.44 (d, 1 H, H-1), 4.35 (t, 1 H, $J_{1,2} = J_{2,3} =$

^{*}For the 2,3-di-O-benzyl derivatives, the absolute configuration of the 4-C-(oxiran-2-yl) derivatives was determined by comparison of the corresponding, reduced products with that of those obtained by the epoxidation of the corresponding (Z)- and (E)-4-C-ethylene derivatives followed by alkaline cleavage of the epoxide ring.


TABLE I

	[¤] _D in CHCl, (degrees)	Chemical shifts (8) and coupling constants (Hz)								
		H-2	H-3	H-4'	H-5	H-6	OCH ₂ O	ОМе	CO ₂ Me	OH
18	-70.0	4.74d	4.41d	3.60 ABq 3.78	3.67q	1.28d	4.96s 5.21s	3.38	3.81	3.00
		J _{2,3} 5.0		J 12.4	J _{5,6} 6.5					
20	-26.1	4.85d	4.17d	3.59 ABq 3.78	3.69q	1.26d	4.98s 5.23s	3.40	3.80	2.66
		J _{2,3} 5.0		J 12.2	J _{5,5} 6.5					
20 (reported ⁷)	-28	4.85d	4.19d	3.6-3	8.9m	1.25d	5.0s 5.21s	3.35	3.81	-
		$J_{2,3} 5.0 \qquad J_{5,6} 6.5$								

COMPARISON OF ROTATIONAL VALUES AND N.M.R. PARAMETERS

4.8 Hz, H-2), 4.27 (d, 1 H, H-3), 3.68 (q, 1 H, $J_{5,6}$ 6.4 Hz, H-5), ~3.6 (m, 2 H, 4'-CH₂), 3.50, 3.47, and 3.36 (each s, 3 OMe), 2.81 (broad s, 2 OH), and 1.26 (d, 3 H, H-6)}, in 10 and 13% yield, respectively. Similar oxidation of 17 gave the C-5 epimer (20) of 18 as a syrup (see Table I), and the dimethyl acetal (21) of 17 as a syrup {[α]_D +3.8° (c 2.3, CHCl₃); n.m.r.: δ 5.10 and 4.98 (each d, 2 H, J_{gem} 0.8 Hz, 2,3-O-methylene), 4.50-4.36 (m, 2 H, H-1,3), 4.05 (dd, 1 H, J 1.2 and 3.0 Hz, H-2), 3.71 (q, 1 H, $J_{5,6}$ 6.0 Hz, H-5), 3.68 and 3.54 (ABq, 2 H, J 12.4 Hz, 4'-CH₂), 3.51, 3.49, and 3.42 (each s, 3 OMe), 3.02 (broad s, 2 OH), and 1.28 (d, 3 H, H-6)}, in 8 and 6% yield, respectively.

Comparison of the rotational value and n.m.r. parameters (see Table I) of 18 and 20 with those reported⁷ indicated that the determination and deduction of the configuration of C-4 and of the α -carbon atom in the branch chain were correct. Thus, synthesis of all of the new, branched-chain sugars found in the eveninomycins is now complete.

ACKNOWLEDGMENTS

This work was carried out with a Grant-in-Aid (No. 347023) from the Ministry of Education. The authors thank Mr. E. Eto and Mr. Y. Nakamura for the recording and measurement of the ¹H- and ¹³C-n.m.r. spectra.

REFERENCES

- 1 M. Funabashi, N. Hong, H. Kodama, and J. Yoshimura, Carbohydr. Res., 67 (1978) 139-145.
- 2 J. Yoshimura, N. Hong, and K. Sato, Chem. Lett., (1979) 1263-1264.
- 3 J. Yoshimura, M. Matsuzawa, K. Sato, and Y. Nagasawa, Carbohydr. Res., 76 (1979) 67-78.
- 4 A. K. Ganguly, "Oligosaccharide Antibiotics", in P. G. Sammes (Ed.), *Topics in Antibiotic Chemistry*, Vol. 2, Wiley, New York, 1978, pp. 59-98.
- 5 J. Yoshimura and M. Tamaru, Carbohydr. Res., 72 (1979) C9-C11.
- 6 A. K. Ganguly, O. Z. Sarre, A. T. McPhall, and R. W. Miller, J. Chem. Soc. Chem. Commun., (1979) 22-24.
- 7 A. K. Ganguly, O. Z. Sarre, D. Greeves, and J. Morton, J. Am. Chem. Soc., 97 (1975) 1982-1985.
- 8 T. Sivakumaran and J. K. N. Jones, Can. J. Chem., 45 (1967) 2493-2500.
- 9 J. S. Brimacombe, A. B. Foster, B. D. Jones, and J. J. Willard, J. Chem. Soc., C, (1967) 2404-2407.
- 10 J. Yoshimura, K. Sato, and H. Hashimoto, Chem. Lett., (1977) 1327-1330.
- (a) M. Miljkovic, M. Gligorijevic, T. Satoh, D. Glisin, and R. D. Pitcher, J. Org. Chem., 39 (1974) 3847-3850; (b) P. M. Collins and V. R. N. Munasinghe, Carbohydr. Res., 62 (1978) 19-26; (c) K. Sato, M. Matsuzawa, K. Ajisaka, and J. Yoshimura, Bull. Chem. Soc. Jpn., 53 (1980) 189-191.
- (a) H. B. Henbest and R. A. L. Wilson, J. Chem. Soc., (1957) 1958-1965; (b) H. B. Henbest,
 B. Nicholls, W. R. Jackson, R. A. L. Wilson, and N. S. McElhinney, Bull. Soc. Chim. Fr., (1960) 1365-1368.