Addition Reactions of Tertiary Silylphosphanes with Acetylenic Ketones and Aldehydes

Martin Reisser, Alexandra Maier, Gerhard Maas*

Abteilung Organische Chemie I, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany Fax +49(731)5022803; E-mail: gerhard.maas@chemie.uni-ulm.de *Received 18 June 2002*

Abstract: (Trimethylsilyl)phosphanes Me_3Si-PR_2 ($PR_2 = PPh_2$, PEt₂, 1-phospholanyl) add smoothly across the C=C bond of acetylenic ketones RCOC=CPh to form (*Z*)-3-phosphanyl-2-(trimethylsilyl)prop-2-en-1-ones **3** (3,4-addition). Thermal isomerization of the latter yields the corresponding 3-(trimethylsilyl)oxy-allenylphosphane **6**, formally the product of a 1,4-addition. Mainly 1,2addition occurs with propiolic aldehydes leading to (1-[(trimethylsilyl)oxy]propargyl)phosphanes **4**. Desilylation reactions of **3b** yield either (3-oxopropyl)phosphanoxide **7** or (3-oxopropenyl)phosphanoxide **8**.

Key words: organophosphorus(III) compounds, organosilicon compounds, nucleophilic addition at alkynones, enones, siloxy-allenes

Tertiary silvlphosphanes react with α,β -unsaturated olefinic ketones and aldehydes in general by addition across the C=C double bond (3,4-addition).¹ Surprisingly, analogous reactions with acetylenic carbonyl compounds are barely known: Märkl et al. have reported the synthesis of a 4-phosphacyclohexadien-1-one from 1,5-diphenyl-1,4pentadiyn-3-one and PhP(SiMe₃)₂ in the presence of AIBN,² and Regitz et al. have described the insertion of acetylenic esters and ketones into the P-Si bond of Psilylated cyclopropenylidenephosphanes³ and 1,2-dihydro-1,2-phosphasiletes.⁴ We report now that more common and readily accessible dialkyl- and diaryl(trimethylsilyl)phosphanes also react smoothly with acetylenic carbonyl compounds and that the formation of 3,4-, 1,2-, and 1,4-addition products is feasible. Reactions of diphenyl(trimethylsilyl)phosphane with terminal and internal alkoxyalkynes have been investigated recently by Russian researchers.5

Silylphosphanes **1a**– c^6 reacted readily with acetylenic ketones **2a–c** in a 3,4-addition mode to furnish 3-phosphanyl-2-(trimethylsilyl)propenones **3a–e** in good yield (Scheme 1).⁷ Acetonitrile or THF was used as the solvent since related phosphane additions to olefinic substrates were found to be faster in polar solvents.¹ Acetonitrile had the additional advantage that some of the products crystallized directly from the reaction solution.

The identity of enones $3\mathbf{a}-\mathbf{e}$ was established by their spectroscopic data (Table). A strong IR absorption at 1629–1687 cm⁻¹ indicated the presence of a carbonyl group, and

Synlett 2002, No. 9, Print: 02 09 2002.

Art Id.1437-2096,E;2002,0,09,1459,1462,ftx,en;G16702ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

Scheme 1 Conditions: CH_3CN or THF, $0\rightarrow 20$ °C

the C=C-C=O unit was recognized by the ¹³C chemical shifts together with characteristic P,C coupling constants. The ²⁹Si NMR signal of **3b** was observed as a doublet at $\delta = -8.5$ ppm [³J(Si,P) = 11.4 Hz]. These data exclude the alternative structures of 1,2- and 1,4-addition products featuring Me₃SiO functionalities (vide infra). It is reasonable to assume that the formation of 3 begins with an addition of the nucleophilic phosphorus atom of silvlphosphanes 1 at the electron-deficient triple bond of acetylenic ketones 2. The NMR spectra showed the presence of only one isomer in all cases. The magnitudes of the ${}^{3}J(P,C=O)$ (19.5–24.2 Hz), ${}^{4}J(P,SiC)$ (9.5–10.2 Hz), and ${}^{5}J(P,SiCH_{3})$ (1.2–1.6 Hz, except for 3d) coupling constants indicate the same double bond configuration in all cases. However, a definite assignment cannot be made because a rigorous stereochemical proof for related systems⁴ is not available and it has been noted that no obvious stereochemical dependence of the ${}^{3}J(P,C)$ coupling constant in vinylphosphanes exists.⁸ An X-ray crystal structure analysis of 3b provided the definite proof of the Z configuration (Figure).⁹ The ¹H and ¹³C NMR spectra of **3b** show temperature-dependent signals and coalescence phenomena for the PEt₂ group and the adjacent phenyl ring. This is probably due to steric hindrance between the SiMe₃ and the PEt₂ groups which slows down the exchange between the position of the PEt₂ group (see Figure) and a conformation obtained by a 180° rotation around the $C(sp^2)$ –P bond.

Table Selected IR, ¹³C{¹H} NMR, and ³¹P NMR Data of Compounds 3, 4, and 6

Com- pound	IR [cm ⁻¹] (C=O)	¹³ C NMR (125.77 MHz, CDCl ₃ , TMS), δ [ppm] ($J_{C,P}$ [Hz])				³¹ P NMR, δ [ppm]
		C-1	C-2	C-3	Other Signals	
3a	1663	200.6 (23.9)	151.5 (25.2)	164.8 (52.8)	$0.9 (d, {}^{4}J_{C,P} = 10.0, SiMe_3), 126.0-139.0 (C_{Ph})$	2.2
3b ^a	1655	200.5 (20.4)	154.3 (26.7)	164.0 (49.1)	1.8 (d, ${}^{4}J_{C,P} = 10.1$, SiMe ₃), 10.4 (d, ${}^{2}J_{C,P} = 16.2$, CH ₃), 11.1 (d, ${}^{2}J_{C,P} = 16.0$, CH ₃), 18.4 (d, ${}^{1}J_{C,P} = 10.0$, PCH ₂), 18.5 (d, ${}^{1}J_{C,P} = 9.4$, PCH ₂), 125.9–137.2 (C _{Ph})	-17.8
3c	1650	200.8 (19.5)	156.6 (34.0)	159.5 (47.4)	1.4 (d, ${}^{4}J_{C,P} = 10.0$, SiMe ₃), 25.8 (m, br, PCH ₂), 28.2 (s, 2 C, CH ₂), 126.0–139.3 (C _{Ph})	-18.2
3d	1629	192.5 (24.2)	152.3 (25.6)	164.1 (55.2)	1.4 (d, ${}^{4}J_{C,P} = 9.5$, SiMe ₃), 126.1–144.3 (C _{Ph} , C _{Thie})	2.6
3e	1687	208.6 (20.2)	151.1 (26.7)	166.4 (48.0)	1.7 (d, ${}^{4}J_{C,P} = 10.2$, SiMe ₃), 10.4 (d, ${}^{2}J_{C,P} = 17.1$, CH ₃), 18.8 (d, ${}^{1}J_{C,P} = 11.2$, PCH ₂), 31.4 (d, ${}^{4}J_{C,P} = 2.3$, CH ₃ CO), 126.5, 127.6, 127.7, 137.6	-17.2
4a	_	64.4 (-)	88.2, 88.5			4.2
4 b	_	61.9 (11.4)	87.2, 87.8			-16.0
6	_	118.3 (23.9)	201.0		0.2 (s, SiMe ₃), 9.65 (d, ${}^{2}J_{C,P} = 10.1$, CH ₃), 9.87 (d, ${}^{2}J_{C,P} = 16.3$, CH ₃), 17.4 (d, ${}^{1}J_{C,P} = 10.1$, PCH ₂), 17.8 (d, ${}^{1}J_{C,P} = 13.8$, PCH ₂), 124.4–137.3	-10.6

^a The ¹³C NMR spectrum was recorded at 233 K.

When silylphosphanes **1a**,**b** were combined with phenylpropargyl aldehyde, the nucleophilic 1,2-addition at the aldehyde function dominated by far over the 3,4-addition, and propargylphosphanes **4**, accompanied by traces of acrylic aldehyde derivatives **5**, were obtained¹⁰ (Scheme 2).

The direct 1,4-addition of silylphosphanes 1 at the conjugated system of alkynones 2, leading to 1-phosphanyl-3siloxyallenes, was not observed in any of the reactions de-

Figure Molecular structure of **3b** in the solid state (ORTEP plot); the ellipsoids of thermal vibration represent a 50% probability

Scheme 2 Conditions: CH_3CN or THF, $0 \rightarrow 20 \ ^{\circ}C$

scribed above. However, when enone 3b was heated in toluene at 150 °C in toluene in a closed thick-walled Schlenk tube, thermal rearrangement into allene 6 took place through a $1,3(C \rightarrow O)$ SiMe₃ shift (Scheme 3). The isomerization was almost complete after 40 h; at this stage, the ³¹P NMR spectrum showed the signals of **6** and **3b** in a ratio of 99.4:0.6, accompanied by ca 2% of a signal at $\delta = 47.7$ ppm (POEt₂).¹¹ The formation of **6** is in accord with the NMR data (Table) which show the disappearance of the olefinic carbon signals of the enone while the singlet signal of the central allenic carbon ($\delta = 201.0$ ppm) replaces the doublet signal of the carbonyl carbon of **3b** $(\delta = 200.5 \text{ ppm})$. Also indicative of the formation of the trimethylsilyloxy function is the small high-field shift of the ¹H and ¹³C signals of the SiMe₃ group both of which no longer show a long-range coupling with the P nucleus.

Due to the presence of different functional groups, compounds **3** should be amenable to various further transformations. In an effort to remove the SiMe₃ group, we found that treatment of **3b** with acids gave the (3-oxopropyl)phosphanoxide **7**¹² formally resulting from desilylation and addition of water (Scheme 4). This trans-formation represents a novel method to prepare compounds of type **7**.¹³ Protodesilylation with conservation of the olefinic bond was achieved when **3b** was kept in wet acetone; not unexpectedly, concomitant oxidation of the phosphanyl function also took place. The resulting (3-oxopropenyl)phosphanoxide **8** was obtained as a *E*,*Z* mixture which could be separated by column chromato-graphy.¹⁴ The stereochemical assignment can be based reliably on ³*J*_{P,H} and ³*J*_{P,C} coupling constants (*trans* > *cis*).⁸

Scheme 4 a) CF₃COOH, CHCl₃, 24 h, 59% yield; b) wet acetone, r.t., 3-5 days, yield: 38% *E*-8, 21% *Z*-8 (ca. 10% of residual 3b).

In conclusion, we have shown that tertiary trimethylsilylphosphanes add smoothly in a *syn* fashion to the triple bond of acetylenic ketones, and we have furnished an unequivocal proof for the *Z* configuration of the products **3**. In contrast, the reaction of Me₃Si–PPh₂ with internal alkoxyalkynes requires much more forcing conditions and was reported to give anti-addition products.⁵ The presence of several different functional groups in compounds **3**, which are α,β -unsaturated phosphanes, silanes, and carbonyl compounds simultaneously, provides opportunities for various synthetic transformations. First examples are given here by their thermal isomerization leading to siloxyallenes **6** and desilylation reactions leading to phosphanoxides **7** or **8**.

Acknowledgement

We are grateful to the Fonds der Chemischen Industrie for financial support.

References

- (1) Couret, C.; Escudié, J.; Satgé, J.; Anh, N. T.; Soussan, G. J. Organomet. Chem. **1975**, *91*, 11.
- (2) Märkl, G.; Olbrich, H. Tetrahedron Lett. 1968, 35, 3813.
- (3) (a) Fuchs, E. P. O.; Heydt, H.; Regitz, M.; Schoeller, W. W.; Busch, T. *Tetrahedron Lett.* **1989**, *30*, 5111. (b) Fuchs, E. P. O.; Breit, B.; Bergsträsser, U.; Hoffmann, J.; Heydt, H.; Regitz, M. *Synthesis* **1991**, 1099.
- (4) (a) Haber, S.; Boese, R.; Regitz, M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1436; Angew. Chem. 1990, 102, 1523.
 (b) Haber, S.; Schmitz, M.; Bergsträsser, U.; Hoffmann, J.; Regitz, M. Chem.-Eur. J. 1999, 5, 1581.
- (5) Kochetkov, A. N.; Efimova, I. V.; Trostyanskaya, I. G.; Kazankova, M. A.; Beletskaya, I. P. *Russ. Chem. Bull.* 1998, 47, 1744.
- (6) (a) 1a: Appel, R.; Geisler, K. J. Organomet. Chem. 1976, 112, 61. (b) 1b: Fritz, G.; Poppenburg, G. Angew. Chem. 1960, 72, 208. (c) Fritz, G.; Poppenburg, G.; Rocholl, M. G. Naturwissenschaften 1962, 74, 255. (d) 1c Was obtained analogously form 1-phenyl- or 1*H*-phospholane.
- (7) (*Z*)-3-(Diphenylphosphanyl)-1,3-diphenyl-2-(trimethylsilyl)prop-2-en-1-one(**3a**); general procedure: A solution of 1,3-diphenylprop-2-yn-1-one (**2a**, 3.1 g, 15.0 mmol) in THF (100 mL) was cooled at 0 °C and diphenyl(trimethylsilyl)phosphane (**1a**, 3.87 g, 15.0 mmol) was added. The reaction mixture was kept with stirring at 0 °C for 2 h, then at 20 °C for 12 h. The solvent was evaporated at 15 mbar and the solid residue was recrystallized from CH₃CN to furnish **3a** as colorless crystals (5.22 g, 75%), mp 127–128 °C. IR (KBr): 1663 s, 1243 s, 1233 s, 858 s, 842 s cm⁻¹. ¹H NMR (CDCl₃, 500.14 MHz): $\delta = 0.51$ (d, ⁵*J*_{H,P} = 1.2 Hz, 9 H, SiMe₃), 6.3–7.8 (20 H_{Ph}). MS (EI, 70 eV): *m/z* (%) = 466 (9), 465 (33), 464 (100) [all M⁺].

3b: From **1b** and **2a**; large pale-yellow crystals, 69% yield, mp 100 °C. IR (KBr): 1655 s, 1237 s, 844 s, 703 m cm⁻¹. ¹H NMR (CDCl₃, 500.14 MHz, 233 K): $\delta = 0.35$ (d, ⁵ $J_{\rm H,P} =$ 1.6 Hz, 9 H, SiMe₃), 1.0–1.4 (m, 10 H_{ethyl}), 6.6–7.6 (10 H_{ph}). ²⁹Si NMR (CDCl₃, 99.37 MHz): $\delta = -8.5$ (d, ³ $J_{\rm Si,P} = 11.4$ Hz). MS (EI, 70 eV): m/z (%) = 370 (5), 369 (10), 368 (39) [all M⁺], 279 (100). C₂₂H₂₉OSiP (368.53): calcd C 71.70, H 7.93; found C 71.38, H 8.12.

3c: From **1c** and **2a**; pale-yellow crystals, 69% yield, mp 99 °C. IR (KBr): 1667/1650 vs, 1230 vs, 1174 vs, 702 vs cm⁻¹. ¹H NMR (CDCl₃, 500.14 MHz): $\delta = 0.35$ (d, ⁵ $J_{H,P} = 1.5$ Hz, 9 H, SiMe₃), 1.08–1.25 (m, coalescing, 2 H), 1.35–1.45 (m, 2 H), 1.65–1.90 (m, 4 H), 6.7–7.7 (10 H_{Ph}). MS (EI, 70 eV): *m/z* (%) = 368 (2), 367 (7), 366 (25) [all M⁺], 279 (100). C₂₂H₂₇OPSi (366.51): calcd C 72.10, H 7.42; found C 71.80, H 7.55.

3d: From **1a** and **2b**; 70% yield, amorphous solid, mp 149 °C. IR (KBr): 1629 vs, 1413 s, 1261 s, 1246 s, 846 vs, 743 vs, 725 s, 702 vs cm⁻¹. ¹H NMR (CDCl₃, 500.14 MHz): $\delta = 0.44$ (s, 9 H, SiMe₃), 6.4–7.5 (18 H_{arom}). MS (EI, 70 eV): m/z (%) = 472 (13), 471 (36), 470 (100) [all M+], 469 (39). C₂₈H₂₇OPSSi (470.64): calcd C 71.46, H 5.78; found C 71.52, H 5.62.

3e: From **1b** and **2c**, malodorous colorless oil, isolated by bulb-to-bulb distillation at 80–100 °C/0.0001 mbar; 76% yield. IR (KBr): 1687 s, 1245 s, 1187 s, 841 s cm⁻¹. ¹H NMR (CDCl₃, 500.14 MHz): $\delta = 0.49$ (d, ⁵*J*_{H,P} = 1.5 Hz, 9 H, SiMe₃), 1.19 (dt, 6 H, CH₂CH₃), 1.35 (m, 4 H, PCH₂), 1.86 (d, ⁵*J*_{H,P} = 1.4 Hz, COCH₃), 6.90–7.00 (m, 2 H_{Ph}), 7.32–7.43 (m, 3 H_{Ph}). MS (EI, 70 eV): *m*/*z* (%) = 308 (2), 307 (9), 306 (43) [all M⁺], 217 (100). C₁₇H₂₇OPSi (306.46): calcd C 66.63, H 8.88; found C 67.31, H 8.25.

(8) Duncan, M.; Callagher, M. J. Org. Magn. Reson. 1981, 15, 37.

- (9) Crystal data for **3b**: Triclinic, space group *P*Ī, *a* = 9.432
 (3), *b* = 9.611 (2), *c* = 12.548 (3) Å, *a* = 98.82 (3), *β* = 102.21 (3), *γ* = 101.69 (3); *Z* = 2, *D*_{calc} = 1.149 g·cm⁻³. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-187712. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033).
- (10) Yield of crude **4a,b**: ~90%; since both compounds are extremely malodorous oils, we refrained from further purification. Data for **4a**: ¹H NMR (CDCl₃, 500.14 MHz): $\delta = 0.17$ (s, SiMe₃), 5.33 (d, ²J_{H,P} = 1.2 Hz, HCC=C), 7.23–7.70 (m, 5 H_{Ph}). ¹³C{¹H} NMR (CDCl₃, 50.32 MHz): $\delta = 0.2$ (s, SiMe₃), 64.4 (s, HCC=C), 88.21 (d, J_{C,P} = 10.6 Hz) and 88.63 (d, J_{C,P} = 5.0 Hz) (C=C). This product was isolated as a 6.2:1 mixture (³¹P NMR) with **5a** [δ (¹H) = 0.43 (d, ⁵J_{H,P} = 1.5, SiMe₃); δ (¹³C) = 1.8 (d, ⁴J_{C,P} = 9.1, SiMe₃), 198.0 (³J_{C,P} = 17.4, CHO); δ (³¹P) = 3.4]. Data for **4b**: IR (film): 1679 m, 1599 m, 1251 vs, 1065 vs, 868 vs, 844 vs, 754 m cm⁻¹. ¹H NMR (CDCl₃, 200.13 MHz): $\delta = 0.16$ (s, 9 H, SiMe₃), 0.90–1.15 (dt, 6 H, CH₂CH₃), 1.30–1.70 (m, 4 H, PCH₂), 4.78 (d, J_{H,P} = 5.0 Hz, HCC=C), 7.15–7.40 (m, 5 H_{Ph}). ¹³C{¹H} NMR (CDCl₃, 50.32 MHz): $\delta = 0.06$ (s = crd 0.55 (srd 4 d, J_{H,P} = 5.0 Hz, HCC=C), 7.15–7.40 (m, 5 H_{Ph}).
 - 0.09 (s, SiMe₃), 9.85 and 9.95 (each d, $J_{C,P} = 15.1$ Hz, CH₂CH₃), 16.4 (d, $J_{C,P} = 15.1$ Hz, PCH₂), 16.7 (d, $J_{C,P} = 14.1$ Hz, PCH₂), 61.9 (d, $J_{C,P} = 11.6$ Hz, HCC=C), 87.2 (s) and 87.9 (d, $J_{C,P} = 4.0$ Hz) (C=C). This product was isolated as a 94:6 mixture (³¹P NMR) with **5b** [δ (¹H) = 0.32 (d, ⁵ $J_{H,P} = 1.6$ Hz, SiMe₃); δ (¹³C) = 2.3 (d, ⁴ $J_{C,P} = 10.7$ Hz, SiMe₃)].
- (11) Allene **6** was obtained as an oil (~97% purity by ³¹P NMR) which could not be purified further by chromatography or vacuum distillation without decomposition. ¹H NMR (CDCl₃, 500.14 MHz): $\delta = 0.21$ (s, 9 H, SiMe₃), 1.04 and 1.42 (each dt, 3 H, PCH₂CH₃), 1.58–1.74 (m, 4 H, PCH₂), 7.24–7.38 (m, 6 H_{Ph}), 7.61 (dd, 2 H_{Ph}), 7.64 (dd, 2H_{Ph}).
- (12) 7: colorless crystals, mp 89 °C. IR (KBr): 1688 (s, C=O), 1266 m, 1158 (s, P=O) cm⁻¹. ¹H NMR (CDCl₃, 400.13

- $\begin{array}{l} \mbox{MHz}): \delta = 1.01 \ (dt, {}^3J_{\rm P,H} = 17.0 \ Hz, {}^3J_{\rm H,H} = 7.7 \ Hz, 3 \ H, \\ \mbox{CH}_2 CH_3), 1.23 \ (dt, {}^3J_{\rm P,H} = 17.2 \ Hz, {}^3J_{\rm H,H} = 7.7 \ Hz, 3 \ H, \\ \mbox{CH}_2 CH_3), 1.49 1.74 \ (m, 2 \ H, \ {\rm PCH}_2), 1.84 2.05 \ (m, 2 \ H, \\ \mbox{PCH}_2), 3.80 \ (m_c, 2 \ H, \ {\rm COCH}_2), 3.95 \ (m_c, 1 \ H, \ {\rm PCH}), 7.26 \\ \mbox{7.55} \ (m, 8 \ H_{\rm arom}), 7.96 \ (dd, 2 \ H_{\rm arom}). {}^{13}{\rm C} \{^1{\rm H}\} \ {\rm NMR} \ ({\rm CDCl}_3, \\ 100.61 \ {\rm MHz}): \delta = 5.88/5.92 \ (2 \ d, \ J_{\rm P,C} = 44.3/44.3 \ {\rm Hz}, \\ \mbox{PCH}_2 CH_3), 18.51/19.25 \ (2 \ {\rm overlapping} \ d, \ {\rm PCH}_2), 38.6 \ ({\rm s}, \\ \mbox{COCH}_2), 39.1 \ (d, \ J_{\rm P,C} = 61.4 \ {\rm Hz}, \ {\rm CHPOEt}_2), 127.2 137.5 \ ({\rm C}_{\rm Ph}), 196.9 \ (d, \ J_{\rm P,C} = 10.2 \ {\rm Hz}, \ {\rm CO}). {}^{31}{\rm P} \ ({\rm CDCl}_3): \ \delta = 54.8. \\ \mbox{C}_{19}{\rm H}_{23}{\rm O}_2{\rm P} \ (314.36): \ {\rm calcd} \ {\rm C} \ 72.59, \ {\rm H} \ 7.37; \ {\rm found} \ {\rm C} \ 72.82, \\ \mbox{H} \ 7.51. \end{array}$
- (13) For other methods to prepare γ-ketophosphinates and -phosphanoxides, see: (a) Bell, A.; Davidson, A. H.; Earnshaw, C.; Norrish, H. K.; Torr, R. S.; Trowbridge, D. B.; Warren, S. *J. Chem. Soc., Perkin Trans. 1* 1983, 2879.
 (b) Pudovik, A. N.; Sovanov, A. A.; Bakhtiyarova, I. V.; Zimin, M. G. *Zh. Obshch. Khim.* 1983, *53*, 2456.
- (14) (Z)-8: Colorless oil. IR(film): 1669 (s, C=O), 1225 (s), 1174 (s, P=O) cm⁻¹. ¹H NMR (CDCl₃, 400.13 MHz): $\delta = 1.14$ (dt, ${}^{3}J_{P,H} = 17.4 \text{ Hz}, {}^{3}J_{H,H} = 7.7 \text{ Hz}, 6 \text{ H}, \text{PCH}_{2}\text{CH}_{3}), 1.80-1.97$ (m, 4 H, POCH₂), 7.24 (d, ${}^{3}J_{P,H} = 30.5$ Hz, 1 H, COCH=), 7.35–7.60 (3 m, 8 H_{arom}), 7.97–8.00 (dd, 2 H_{arom}). ¹³C{¹H} NMR (CDCl₃, 100.61 MHz): $\delta = 5.67$ (d, $J_{P,C} = 5.3$ Hz, PCH_2CH_3), 21.9 (d, $J_{PC} = 69.1$ Hz, PCH_2), 128.1–128.8 (several C), 133.8 (CH), 137.0, 138.8 (d, $J_{P,C} = 9.1$ Hz), 142.3 ($J_{P,C} = 5.4 \text{ Hz}$, COCH=), 145.8, 146.5, 192.9 (d, $J_{P,C} =$ 4.9 Hz, C=O). ³¹P: δ = 46.4. C₁₉H₂₁O₂P (312.35): calcd C 73.06, H 6.78; found C 72.68, H 6.94. (E)-8: Colorless crystals, mp 80 °C. IR (solid, ATR): 1659 (s, C=O), 1254 (s), 1188 (s, P=O) cm⁻¹. ¹H NMR (CDCl₃, 400.13 MHz): δ = 1.25 (dt, ${}^{3}J_{P,H} = 16.9$ Hz, ${}^{3}J_{H,H} = 7.6$ Hz, 6 H, PCH₂CH₃), 1.67-1.86 (m, 4 H, POCH₂), 7.09-7.52 (4 m, 8 H_{arom}), 7.82 $(d, {}^{3}J_{P,H} = 17.8 \text{ Hz}, 1 \text{ H}, \text{COCH} =), 7.87 (dd, 2 \text{ H}_{arom}).$ ¹³C{¹H} NMR (CDCl₃, 100.61 MHz): $\delta = 5.42$ (d, $J_{P,C} = 5.7$ Hz, PCH₂CH₃), 19.6 (d, J_{P,C} = 69.8 Hz, PCH₂), 127.6–128.9 (several C), 133.5 (CH), 134.9 (d, $J_{P,C} = 9.1$ Hz), 136.6, 140.3 ($J_{P,C} = 5.7$ Hz, COCH=), 145.8, 146.5, 191.9 (d, $J_{P,C} =$ 14.8 Hz, C=O). ³¹P: δ = 44.2. C₁₉H₂₁O₂P (312.35): calcd C 73.06, H 6.78; found C 73.11, H 6.83.