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A bulky 1-phosphabarrelene, 2, was obtained from the reaction

of a phosphinine with benzyne; two palladium complexes of 2

were successfully employed in the Suzuki–Miyaura coupling of

several aryl chlorides with phenylboronic acid at a relatively low

catalyst loading, and activated aryl chlorides were coupled at

room temperature in the absence of strong bases.

Phosphorus compounds that feature PQC double bonds are a

powerful synthetic tool for elaborating new classes of func-

tional tertiary phosphines1 and unsaturated heterocycles.

Thus, molecules such as 2H-phospholes and phosphinines

have been widely used as building blocks in the synthesis of

new types of heterocycles that are difficult to obtain using

classical synthetic strategies. Among these, phosphabarrelenes,

which are easily produced from phosphinines through

a [4 + 2] Diels–Alder reaction,2–4 recently appeared as a very

promising new class of ligands for homogeneous catalysis, and

have already shown excellent performances in important

catalytic transformations, such as the hydroformylation of

olefins.3,5 A great advantage in their synthesis resides in the

possible use of 2,6-difunctional phosphinines, which allows the

environment of the phosphorus atom to be sterically tuned.6

As part of a program aimed at evaluating the activity of new

phosphorus heterocycles in group 10-catalyzed C–C and C–N

coupling reactions, we recently explored the synthesis of bulky

substituted phosphabarrelenes and evaluated the reactivity of

their Pd complexes in the Suzuki–Miyaura cross-coupling of

aryl chlorides7 with phenylboronic acid, a challenging trans-

formation in which bulky phosphines are among the most

efficient ligands.8–11 Herein, we wish to report on these results.

The synthesis of 2,6-bis-trimethylsilyl-substituted phospha-

barrelene 2 was readily achieved by the addition of in situ-

generated benzyne2 to phosphinine 1 at room temperature

(Scheme 1). Phosphabarrelene 2 was obtained in good yield

(75%) as an air-stable, white, crystalline solid.12 As anti-

cipated, the X-ray crystal structure analysis of 2z revealed a

strong pyramidalization at the phosphorus atom (S(CPC)= 2881)

(see the ESIw). In order to analyze the electronic proper-

ties of 2 in theoretical terms, a charge decomposition analysis

using the CDA program13 was carried out on some model

[LNi(CO)3] complexes (L = PPh3, 2 and PF3). This type of

analysis has already been shown to provide useful data with

respect to the ratio between donation and back-donation in

transition metal complexes that feature different types of two-

electron donor ligands (see the ESIw for detailed information).

The calculations indicated that 2 was a stronger p-acceptor
ligand than PPh3 but weaker than PF3.

To evaluate the catalytic properties of 2 in the Suzuki–

Miyaura coupling process, two catalytic precursors were

synthesized. We first focused on the (allyl)chloropalladium(II)

derivative, because p-allyl–palladium–N-heterocyclic carbene

(NHC) complexes have been shown to be very efficient cata-

lysts in Suzuki–Miyaura couplings of poorly reactive aryl

chlorides.10

Complex 3, which readily formed upon mixing [Pd(allyl)Cl]2
with 2 in CH2Cl2 at room temperature, was structurally

characterised (Fig. 1). Other important catalyst precursors

for C–C coupling reactions are the 14 VE neutral Pd(0)L2

Scheme 1 The synthesis of phosphabarrelene 2.

Fig. 1 An ORTEP plot (50% thermal ellipsoids) of the X-ray crystal

structure of 3 (hydrogen atoms, one of the two independent crystallo-

graphic units and the disorder of the allyl moiety have been omitted

for clarity). Selected bond lengths (Å) and angles (1): P1–Pd1: 2.291(1),

Pd1–C20a: 2.123(5), Pd1–C21a: 2.139(7), Pd1–Cl: 2.374(1), Pd1–C22a:

2.210(5); P1–Pd1–Cl1: 86.89(4), P1–Pd1–C22a: 172.7(2), S(CPC):
294.9.z
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complexes, where L is typically a trialkyl phosphine.9 The

corresponding phosphabarrelene-containing 14 VE complex,

4, was thus conveniently prepared by the reduction of

[(COD)PdCl2] with cobaltocene in the presence of two equiva-

lents of 2 in acetonitrile, and isolated in high yield (90%) as a

white, crystalline solid (Fig. 2).

Complex 4 adopts a near linear geometry mode, with a

P–Pd–P angle of ca. 1601. As with [Pd(Cy3P)2],
14 no agostic

interactions between the ligands and the Pd atom were

observed.

In the first series of experiments, 3 was used in the presence

of a second equivalent of 1 to determine the best experimental

conditions, the nature of the base being crucial in this type of

coupling.11 The best results were obtained when reactions were

carried out in toluene at 80 1C using carbonate or phosphate

as a base.y Surprisingly, the use of alkoxides resulted in a

complete loss of activity (Table 1).

Various substituted aryl chlorides were coupled with phenyl-

boronic acid under these conditions in very good yields, using

0.2 mol% of either catalyst 3 or 4 (see Table 2).

Acceptor-substituted biphenyls were obtained in excellent

yields with short reaction times. Donor-substituted aryl chlor-

ides required somewhat longer reaction times but the coupling

still proceeded smoothly and delivered the products in high

yields. 2,6-Dimethylchlorobenzene, which is deactivated and

also sterically hindered, was not reactive under these condi-

tions (Table 2, entry 13). Interestingly, reduction of the aryl

chlorides was not observed and only trace amounts of

biphenyl (o1%) resulting from the homo-coupling of phenyl-

boronic acid were detected. Additional reactions involving

different L/Pd ratios were carried out to gain further insight

into the nature of the active species. No difference in the

catalytic activity was observed using one or two equivalents of

ligand when the reaction was performed at 80 1C. In contrast,

Fig. 2 An ORTEP plot (50% thermal ellipsoids) of the X-ray crystal

structure of 4z (hydrogen atoms have been omitted for clarity).

Selected bond lengths (Å) and angles (1): P1–Pd: 2.274(1), P2–Pd:

2.268(1); P1–Pd1–P2: 160.65(4), S(CP1C): 290.5, S(CP2C): 290.2.

Table 1 Optimization of the reaction conditionsa

Entry Base T/1C t/h Conversion (%)b

1 KO(t-Bu) 80 24 0
2 Et3N 80 24 17
3 KOH 80 24 58
4 Cs2CO3 80 24 76
5 K3PO4 80 24 82
6 K2CO3 80 24 91

a Reaction conditions: ArCl (1.0 mmol), PhB(OH)2 (1.2 mmol), base

(3 mmol), toluene (2 mL), 3 (0.002 mmol), 2 (0.002 mmol), 80 1C,

substrate : Pd = 500 : 1. b As judged by GC analysis.

Table 2 The Suzuki–Miyaura cross-coupling of aryl chlorides using 3
or 4a

Entry R Cat. Product t/h Yield (%)b

1 4-CN 3 1 98
2 4 1 99

3 2-CN 3 1 99

4 4-Ac 3 2 95

5 4-NO2 3 2 96

6 4-COOMe 3 2 99

7 4-CF3 3 2 94

8 H 3 12 97

9 4-Me 3 20 91
10 4 20 90

11 3-OMe 3 20 96
12 4 20 92

13 2,6-Me 3 20 5

a Reaction conditions: ArCl (1.0 mmol), PhB(OH)2 (1.2 mmol), K2CO3

(3 mmol), toluene (2 mL), 2 (0.002 mmol), and 3 (0.002 mmol) or 4

(0.002 mmol), 80 1C, substrate : Pd = 500 : 1. b Isolated yield.

Table 3 Further studiesa

Entry R Cat. (%) L/Pd T/1C t/h Yield (%)b

1 4-CN 0.2 1 : 1 80 1 499
2 4-CN 0.2 2 : 1 80 1 499
3 4-CN 0.2 10 : 1 80 1 37
4 4-CN 1.0 1 : 1 25 12 99
5 4-CN 1.0 2 : 1 25 12 5
6 4-CN 1.0c 0 25 12 Trace
7 4-NO2 1.0 1 : 1 25 16 91
8 4-COOMe 1.0 1 : 1 25 24 89

a Reaction conditions: ArCl (1.0 mmol), PhB(OH)2 (1.2 mmol), K2CO3

(3 mmol), toluene (2 mL). b GC yield. c 0.5% [Pd(allyl)Cl]2.
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the use of a ten-fold amount of ligand led to a significant

decrease in the catalytic activity (see Table 3).

Finally, the catalytic activity of 3 at room temperature was

also evaluated. Excellent yields were obtained after 12–24 h at

room temperature when operating at a L/Pd ratio of 1 : 1 for

activated aryl chlorides (Table 3, entries 4, 7 and 8). In

contrast to other catalytic systems that allow the use of aryl

chlorides at room temperature, catalyst 3 shows an important

activity with potassium carbonate as a base, meaning that

there is no need for expensive fluoride or caesium salts, or

strong alkoxide bases.15 Importantly, when using L/Pd ratios

of 2 : 1 or higher, the catalytic activity decreased significantly

(Table 3, entry 5), suggesting that a 12 VE complex may act as

the active species.16 Note also that in the absence of ligand,

only trace amounts of the desired biphenyl product were

formed (Table 3, entry 6).

Interestingly, ligand 2 showed the best performance with a

low L/Pd ratio, in contrast to several other bulky phosphine

ligands, where the best performances are obtained when

reactions are performed at higher L/Pd ratios of 2–6 : 1. Both

catalytic precursors 3 and 4 utilized herein efficiently catalyze

the Suzuki–Miyaura cross-coupling of aryl chlorides at rela-

tively low catalyst loadings (0.2%), with a good tolerance for

functional groups such as methoxy, ester, keto, fluoro, cyano

and nitro.

In conclusion, we have synthesized a new bulky phosphine

ligand from a phosphinine derivative via a [4 + 2] Diels–Alder

reaction with benzyne. This method easily allows modification

of the bulkiness of the ligands via 2,6-disubstitution of the

starting phosphinine derivative. A relatively rare example of a

PdL2 (L = phosphine) complex, 4 has been synthesized and

structurally characterized. Additionally, an air-stable catalyst

precursor, 3, which has been shown to generate a room

temperature catalytic active species, has been synthesized. As

such, complex 3 ranks among the very best systems for this

cross-coupling reaction.

Therefore, 1-phosphabarrelenes should be regarded as a

promising class of ligands in catalyzed cross-coupling reac-

tions, due to the modular synthetic approach that allows fine

tuning of their steric properties.

The CNRS, the École Polytechnique and the IDRIS (for

computer time, project no. 081616) are thanked for supporting

this work.
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