Modification of the Enkephalin "Message" with an Artificial Polycationic C-Terminus^{†,||}

Alan R. Jacobson,[‡] S. William Tam,[§] and Lawrence M. Sayre^{*,‡}

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, and CNS Diseases Research, The Du Pont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0400. Received May 13, 1991

The C-terminal "address" sequences of prodynorphin-derived opioid peptides contain an unusually high proportion of basic residues, which are known to be crucial for conferring high activity and selectivity for κ -opioid receptors. In an effort to investigate the possibility that the polycationic "tails" may be involved in a coulombic interaction with a complementary polyanionic receptor domain, we attached a series of achiral peptide-like cationic fragments to the C-terminus of the opioid peptide "message", Tyr-Gly-Gly-Phe. Binding of the various compounds to opioid receptor types in guinea pig brain membranes was weak, and the pharmacologic activities in the guinea pig ileum were marginal. These results indicate either that the chosen ligand design does not satisfy the structural requirements of the hypothesized coulombic interaction or that the latter is a minor criterion governing receptor recognition.

Introduction

Opioid peptides derived from the proenkephalin B (prodynorphin) gene product¹ include (Figure 1) dynorphin A,^{2,3} α - and β -neoendorphin,⁴ and both leumorphin⁵ and its N-terminal tridecapeptide rimorphin (dynorphin B). Although they all contain the δ -preferring [Leu⁵]enkephalin sequence at their N-termini, these peptides were found to exhibit unusually high potency as well as produced selectivity for κ -opioid receptors.⁴⁻⁸ This finding was initially quite surprising, since all previously studied natural or synthetic opioid peptides had displayed preference for either μ - or δ -receptors, and high κ -activity had been observed only for alkaloid- and piperidine-based opiates. Thus, several studies have been concerned with the nature of the post-enkephalin sequences responsible for conferring κ -selectivity.

An obvious initial focus was the unusual wealth of basic amino acids, including in every case an Arg⁶-Arg/Lys⁷ pair immediately following the invariant Tyr-Gly-Gly-Phe-Leu "message" (Figure 1). The importance of basic residues in conferring κ -activity to Dyn A₁₋₁₇ was first established by Chavkin and Goldstein, who showed that sequential removal of C-terminal residues resulted in a gradual loss of κ -selectivity/activity, and that activity drops were more pronounced upon the removal of Lys or Arg residues.⁹ Subsequent studies by others expanded on these initial findings.¹⁰⁻¹⁶

A comparison of the post-enkephalin sequences among the various proenkephalin B peptides shows that neither the choice between Arg and Lys nor the exact placement of the basic residue in the amino acid sequence are conserved (Figure 1). This appears inconsistent with a sequential matching of amino acid side-chains with complementary receptor subsites, assuming these peptides interact with a common receptor (competitive binding has been demonstrated). A possible importance of sequence position was implied by the observations of a 10-fold potency decrease associated with two "register-shift" dynorphin analogues (a Gly⁶ insert or a Arg⁶ deletion),⁹ but this could merely reflect the importance of the Arg^{6} - Arg^{7} fragment.

We considered the possible involvement of a non-sequence-specific coulombic interaction between the polycationic peptide tail and a complementary polyanionic locus on the κ -receptor, one possibility for the latter being the phospholipid surface of a proteolipid receptor-membrane complex.^{17,18} An electrostatic binding of the Dyn A₁₋₁₃ "address" to liposomes,¹⁹ and the role of the positive charges in governing the interaction of Dyn A₁₋₁₃ with anionic (acidic) lipids^{20,21} has been documented. Certainly

- (1) Hollt, V. Annu. Rev. Pharmacol. Toxicol. 1986, 26, 59.
- (2) Goldstein, A.; Fischli, W.; Lowney, L. I.; Hunkapiller, M.; Hood, L. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 7219.
- (3) Goldstein, A.; Tachibana, S.; Lowney, L. I.; Hunkapiller, M.; Hood, L. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 6666.
- (4) Oka, T.; Kazuro, N.; Kajiwara, M.; Watanabe, Y.; Ishizuka, Y.; Matsumiya, T. Eur. J. Pharmacol. 1982, 79, 301. Rezvani, A.; Hollt, V.; Way, E. L. Life Sci. 1983, 33 (Suppl. I), 271.
- (5) Suda, M.; Nakao, K.; Yoshimasa, T.; Sakamoto, M.; Morii, N.; Ikeda, Y.; Yanaihara, C.; Yanaihara, N.; Numa, S.; Imura, H. *Neurosci. Lett.* 1984, 50, 49. Suda, M.; Nakao, K.; Yoshimasa, T.; Ideda, Y.; Sakamoto, M.; Yanaihara, N.; Numa, S.; Imura, H. Life Sci. 1983, 32, 2769.
- (6) Wuster, M.; Schulz, R.; Herz, A. Eur. J. Pharmacol. 1980, 62, 235.
- (7) Wuster, M.; Rubini, P.; Schulz, R. Life Sci. 1981, 29, 1219.
- (8) Chavkin, C.; James, I. F.; Goldstein, A. Science 1982, 215, 413.
- (9) Chavkin, C.; Goldstein, A. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 6543.
- (10) McKnight, A. T.; Corbett, A. D.; Paterson, S. J.; Magnan, J.; Kosterlitz, H. W. Life Sci. 1982, 31, 1725.
- (11) Corbett, A. D.; Paterson, S. J.; McKnight, A. T.; Magnan, J.; Kosterlitz, H. W. Nature 1982, 299, 79.
- (12) Schulz, R.; Wuster, M.; Herz, A. Peptides 1982, 3, 973. Schulz, R.; Wuster, M.; Herz, A. J. Pharmacol. Exp. Ther. 1984, 230, 200.
- (13) Garzon, J.; Sanchez-Blazquez, P.; Hollt, V.; Lee, N. M.; Loh, H. H. Life Sci. 1983, 33 (Suppl. I), 291.
- (14) Sanchez-Blazquez, P.; Garzon, J.; Lee, N. M. Proc. West. Pharmacol. Soc. 1983, 26, 85; Eur. J. Pharmacol. 1984, 98, 389.
- (15) Turcotte, A.; Lalonde, J.-M.; St.-Pierre, J.; Lemaire, S. Int. J. Pept. Protein Res. 1984, 23, 361.
- (16) James, I. F.; Fischli, W.; Goldstein, A. J. Pharmacol. Exp. Ther. 1984, 228, 88.
- (17) Lee, N. M.; Smith, A. P. Life Sci. 1980, 26, 1459.
- (18) Cho, T. M.; Ge, B. L.; Yamato, C.; Smith, A. P.; Loh, H. H. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 5176. Farahbakhsh, Z. T.; Deamer, D. W.; Lee, N. M.; Loh, H. H. J. Neurochem. 1986, 46, 953. Law, P. Y.; Ostwald, T. J.; Way, E. L.; Loh, H. H. Mol. Pharmacol. 1981, 19, 355. Loh, H. H.; Law, P. Y. Annu. Rev. Pharmacol. Toxicol. 1980, 20, 201.
- (19) Gysin, B.; Schwyzer, R. Arch. Biochem. Biophys. 1983, 225, 467.

[†]A preliminary account of portions of this work was presented at the 187th National Meeting of the American Chemical Society, St. Louis, MO, April 8–13, 1984, Abstr MEDI 26.

¹Case Western Reserve University.

[§]Du Pont Merck Pharmaceuticals.

⁸Abbreviations: Standard three letter abbreviations were used for the amino acids. DCC, N,N'-dicyclohexylcarbodiimide; DCU, N,N'-dicyclohexylurea; HOBt, 1-hydroxybenzotriazole; CBZ, benzyloxycarbonyl; BOC, *tert*-butoxycarbonyl; EDA, ethylenediamine; Ac, acetyl; OpNP, *p*-nitrophenol; THF, tetrahydrofuran; GPI, guinea pig ileum; EKC, ethylketocyclazocine; DADLE, [D-Ala²,D-Leu⁵]enkephalin.

Table I. Biological Activity of Hybrid Enkephalin Analogues

	binding; K_1 , ^b nM			GPI; % inhibn ^e		
				+	+	
compound ^a	ĸ	μ	δ	bestatin	cocktaild	
Tyr-Gly-Gly-Phe-					_	
$-NHCH_2CH_2NHR$ (1a)	36700 ± 3240	16500 ± 740	10100 ± 4630	29.5	28.5	
$-NHCH_2CH_2N(R)CH_2CH_2NHR$ (2a)	8750 ± 488	14400	22700	13.5	17.5	
$-NHCH_2CH_2N(R)CH_2CH_2N(R)CH_2CH_2NHR$ (3a)	3730	6760	>10000	11.0	9.0	
$-NHCH_2CH_2CH_2N(R)CH_2CH_2CH_2NHR$ (4a)	5510	7300	8430	13.0	12.5	
$RNHCH_2CH_2N(R)CH_2CH_2NHR$ (5)	ND ^e	ND	ND	0	0	
$\mathbf{R} = -\mathbf{C}(\mathbf{O})\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2}\mathbf{N}\mathbf{H}_{2}$						
dynorphin A(1-13)amide	3.6	50	16	ND	ND	

^a All compounds were tested as the HCl salts. ^b The numbers represent either single experiments in duplicate or means \bullet SEM of three experiments in duplicate. See Experimental Section for other details. ^c Compounds were tested at 10⁻⁶ M final concentration in the GPI. Values represent the average of two or three experiments in tissues in which morphine gave an average of 50% inhibition of electrically evoked contractions at 10⁻⁷ M. ^d Comprised of 10 μ M bestatin, 10 μ M captopril, 0.3 μ M thiorphan, and 10 mM L-leucylleucine. See ref 40 for details. ^eND = not determined.

dynorphin A(1-13):

Tyr-Gly-Gly-Phe-Leu-Arg⁺-Arg⁺-Ile-Arg⁺-Pro-Lys⁺-Leu-Lys⁺

a-neoendorphin: Tyr-Gly-Gly-Phe-Leu-Arg*-Lys*-Pro-Lys*

dynorphin B: Tyr-Gly-Gly-Phe-Leu-Arg⁺-Arg⁺-Gln-Phe-Lys⁺-Val-Val-Thr

Figure 1. Amino acid sequences of some prodynorphin-derived opioid peptides.

any such coulombic interaction cannot be an absolute criterion governing opioid receptor type preference, as there exist many non-peptide ligands for the κ -receptor (e.g., ethylketocyclazocine, tifluodom, and the U-50, 488 benzeneacetamide series of analogues) which lack a polycationic fragment. However, the relationship between peptidergic and nonpeptidergic ligands for opioid receptor types is not always straightforward, one possibility being that such ligands interact with different receptor subpopulations (as many as four subtypes of κ -receptors have been implicated²²) or with different domains of the same recognition site.

If a coulombic interaction involving the "address" segments of prodynorphin-based peptides does play a role in receptor recognition, it should be possible to reproduce the required ligand-receptor interaction with an artificial peptide-like polycationic tail. In an effort to test this hypothesis we synthesized the series of hybrid compounds listed in Table I involving the appendage of an achiral N-(4-aminobutyryl)-functionalized polyethylenimine chain to the N-terminal enkephalin-recognition tetrapeptide. This design was chosen to maintain peptide-like physicochemical properties and the proper three-atom spacing of side chains. Although attachment of the polycationic tail directly to Tyr-Gly-Gly-Phe deleted the Leu⁵ residue, the spacing of the first cationic side chain is within one atom of where it should be (see Figure 2). In one case (4a), the dipropylenetriamine backbone was used to increase the spacing between cationic side chains in order to better approximate the lower "charge density" situation when Lys

- Maroun, R.; Mattice, W. I. Biochem. Biophys. Res. Commun. 1981, 30, 442. Mattice, W. L.; Robinson, R. M. Biochem. Biophys. Res. Commun. 1981, 101, 1311.
- (22) Rothman, R. B.; France, C. P.; Bykov, V.; de Costa, B. R.; Jacobson, A. E.; Woods, J. H.; Rice, K. C. Eur. J. Pharmacol. 1989, 167, 345. Rothman, R. B.; Bykov, V.; de Costa, B. R.; Jacobson, A. E.; Rice, K. C.; Brady, L. S. Peptides 1990, 11, 311. Zukin, R. S.; Eghbali, M.; Olive, D.; Unterwald, E. M.; Tempel, A. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4061. Clark, J. A.; Liu, L.; Price, M.; Hersh, B.; Edelson, M.; Pasternak, G. W. J. Pharmacol. Exp. Ther. 1989, 251, 461. Tiberi, M.; Magnan, J. Mol. Pharmacol. 1990, 37, 694; Eur. J. Pharmacol. 1990, 188, 379.

Figure 2. Comparison between natural peptides and cationmodified enkephalins.

Scheme I

EDA + CBZ-Phe-OpNP
CBZ-Phe-NHCH₂CH₂NH₂
$$\xrightarrow{RCOCI}$$

CBZ-Phe-NHCH₂CH₂NH₂ \xrightarrow{RCOCI}
CBZ-Phe-NHCH₂CH₂NHCOR $\xrightarrow{H_2/Pd}$
1c
H-Phe-NHCH₂CH₂NHCOR $\xrightarrow{CBZ-Tyr-Gly-Gly-OH}$
1d
CBZ-Tyr-Gly-Gly-Phe-NHCH₂CH₂NHCOR $\xrightarrow{1. H_2NNH_2}$
1e
H-Tyr-Gly-Gly-Phe-NHCH₂CH₂NHCOCH₂CH₂CH₂NH₂•2HCI

and/or Arg are separated by a neutral amino acid. If a non-sequence-specific recognition were involved, we expected that activity would not be too sensitive to the exact spacing. The despeptide analogue 5 was synthesized as a "control" to check for possible nonopioid effects of the polycationic hybrid peptides. The biological activity was evaluated on the basis of binding studies (guinea pig brain) and pharmacologic evaluation in the guinea pig ileum (GPI), which responds well to typical κ (as well as μ) agonists.

Chemistry

Our initial approach to the synthesis of the desired analogues was to develop a strategy for the selective monoacylation of the appropriate symmetric polyamine. In the case of ethylenediamine, we were able to take advantage of the amine volatility and a statistical rate advantage when using a large excess of the diamine (e.g., as the solvent), to achieve a high yield (>80%) of monoacylation.²³ In this way, the synthesis of the first member

⁽²⁰⁾ Wu, C.-S. C.; Lee, N. M.; Loh, H. H.; Yang, J. T. J. Biol. Chem. 1986, 261, 3687.

2a

of our target series 1a is summarized in Scheme I.

For the preparation of the higher members of the polyethyleneimine analogue series (2a and 3a), the direct monoacylation strategy was problematic, owing to the nonvolatility of the requisite polyamines. Obtaining the desired monoacyl products by relying on a chromatographic separation was found to be tedious, and this approach was abandoned. In addition, attempts to build up the chain via a terminal N,N-dibenzylpolyamine or via hydride (LiAlH₄ or B₂H₆) reduction of oligoglycine units gave undesirably low yields. Instead, strategies were developed (Schemes II and III) which involved the stepwise introduction of ethylenediamine units to extend the backbone, wherein high yields of monoacylation or monoalkylation were ensured by using this volatile diamine in large excess.²³

The synthesis of the dipropylenetriamine analogue 4a was accomplished through a similar strategy (Scheme IV), involving a direct monoalkylation of 1,3-diaminopropane in high yield through use of this volatile amine in excess.

Results

The data in Table I shows that binding of the synthetic compounds to opioid receptor types in guinea pig brain membranes is very weak compared to dynorphin A(1-13) amide. Binding appears to improve somewhat with increasing length of polycationic tail (from monocation 1a to dications 2a and 4a to trication 3a), but the weak affinity mediates against placing too much significance in this observation, and the selectivity displayed for κ -receptors was marginal. In the last two columns of Table I are given data on the ability of the compounds to inhibit electrically stimulated contractions in the longitudinal muscle of the GPI in the presence of either 10 μ M of the aminopeptidase inhibitor bestatin or a "cocktail" of peptidase inhibitors commonly employed in enkephalin bioassays. The C-terminal monocation 1a displayed <10% of the inhibitory activity of morphine, and increasing the length of the polyethyleneimine backbone resulted in a steady decrease rather than increase in activity. Due to the weak potencies of these compounds, we did not attempt to obtain concentration-response curves nor did we investigate the possible existence of opioid receptor selectivity. In fact, our inability to demonstrate good naloxone sensitivity of the GPI activities, coupled with the binding data, suggests that the observed agonist activity in GPI may be at least partially nonopioid in nature. Compounds 1a-4a were also screened in the GPI for possible antagonist activity against the standard *k*-agonist ethylketocyclazocine (EKC). At 1 μ M, none of the compounds caused a significant diminution of the 50-60%inhibition of contractions produced by 1 nM EKC. Finally, compound 5, the despeptide triamine analogue, was devoid

of any pharmacologic activity in the GPI.

Discussion

Since its initial formulation in 1977 by Schwyzer,²⁴ the "message/address" concept has been useful in analyzing opioid receptor type preferences. According to this hypothesis, the N-terminal tetrapeptide Tyr-Gly-Gly-Phe provides the principal recognition locus that determines opioid activity in general (the "message"), whereas the various C-terminal extensions ("addresses") determine receptor type preference.

The basic side-chain residues found in the post-enkephalin sequences of the prodynorphin-derived neuropeptides are thought to be crucial for κ -selectivity, but the structural basis of recognition is unclear. Work by Schiller^{25,26} and others has focused on the question of conformation, the idea being to correlate type selectivity with preferred extended or various folded forms of opioid peptides. Covalent cyclization of peptides offers an indirect method for probing the preferred secondary structure of ligands recognized at receptors. Hruby and coworkers recently prepared dynorphin A analogues with cyclization in the "address" sequence in order to investigate the possibility of a crucial reverse turn at residues 8 or 10.²⁷ Cyclization of Dyn A₁₋₁₃ in the "message" sequence appears to result in high μ -activity.²⁶

Schwyzer has advanced an alternative analysis which focuses on the nature of peptide secondary structure induced upon interaction with lipid bilayer membrane interfaces.^{28,29} He proposes that the various opioid receptor types are associated with distinct receptor-membrane organizations which are complementary to specific combinations of peptide charge and amphiphilic potential. In particular, the "address" sequence of Dyn A is proposed to conform to an amphiphilic α -helix, the membrane interaction of which is thought to result in a perpendicular projection of the enkephalin "message" to the appropriate depth of residence of the κ -recognition locus in the membrane.²⁸ Substantial physicochemical data on dynorphin peptides^{21,30} and the activity of minimally homologous secondary structure mimics³¹ support the notion of a membrane-assisted opioid receptor selection.²⁹

The "address" sequence may also govern other issues, such as the stability toward peptidases and how this feature is tied into the question of whether the opioid peptide serves a neurohormonal or a neurotransmitter function. For prodynorphin-derived peptides, it has been proposed that fragments of 10 amino acids or greater are more κ -like, are relatively resistant to peptidases, and act hormonally (viz., at a distance from the site of release); whereas the shorter fragments are less κ -selective, are more readily cleaved by peptidases, and serve a transmitter role in vivo.¹¹ Dynorphin itself exhibits only weak analgesic ac-

- (24) Schwyzer, R. Ann. N. Y. Acad. Sci. 1977, 297, 3.
- (25) Schiller, P. W. Int. J. Pept. Protein Res. 1983, 21, 307.
- (26) Schiller, P. W.; Eggimann, B.; Nguyen, T. M.-D. Life Sci. 1982, 31, 1777. Schiller, P. W.; Nguyen, T. M.-D.; Lemieux, C. Tetrahedron 1988, 44, 733.
- (27) Kawasaki, A. M.; Knapp, R. J.; Kramer, T. H.; Wire, W. S.; Vasquez, O. S.; Yamamura, H. I.; Burks, T. F.; Hruby, V. J. J. Med. Chem. 1990, 33, 1874.
- (28) Erne, D.; Sargent, D. F.; Schwyzer, R. Biochemistry 1985, 24, 4261. Schwyzer, R. Biochemistry 1986, 25, 4281, 6335.
- (29) Sargent, D. F.; Bean, J. W.; Kosterlitz, H. W.; Schwyzer, R. Biochemistry 1988, 27, 4974.
- (30) Rapaka, R. S.; Renugopalakrishman, V.; Collette, T. W.; Dobbs, J. C.; Carreira, L. A.; Bhatnagar, R. S. Int. J. Pept. Protein Res. 1987, 30, 284.
- (31) Taylor, J. W. Biochemistry 1990, 29, 5364.

⁽²³⁾ Jacobson, A. R.; Makris, A. N.; Sayre, L. M. J. Org. Chem. 1987, 52, 2592.

Scheme III

H-Phe-NH(CH₂CH₂CH₂CH₂N)₂H <u>CC/HOB</u> <u>CC/HD</u> <u>CC/H</u>

tivity, and its physiological function is thought to be mainly one of modulating the response of the μ -opioid receptor.³²⁻³⁴ The unusually persistent binding observed with Dyn A and Dyn A₁₋₁₃,³⁵ perhaps "intentionally programmed" by the "address" sequence, may be a requirement of such neuromodulatory activity.

On the basis of all these studies, it seems clear that the way in which sequence specificity and secondary structure of opioid peptides govern agonist activity at opioid receptor types is complex and intertwined. There have been some successful attempts to direct receptor type selectivity of "hybrid" analogues by attaching receptor type-selective "address" sequences to generic "message" molecules;^{36,37} however, other work has suggested an important role of the "message" in modulating receptor type preference.^{38,39} Thus, additional structure-activity studies will be needed to clarify the overall requirements for receptor type selection.

The aim of our study was to investigate the possibility that the basic side-chain groups of prodynorphin-derived peptides might be involved in a non-sequence-specific polyvalent coulombic interaction with the κ -receptor. Although our synthetic compounds were not devoid of activity, the weak binding to opioid receptors in guinea pig brain membranes and the marginal agonist activity in the GPI (and complete lack of *k*-antagonist activity) indicate a general lack of affinity for opioid receptors. Thus, it seems clear that if a general coulombic interaction is crucial for observing preferential *k*-binding, our ligand design does not meet the necessary structural requirements. One explanation might be that a specific secondary structure of the dynorphin "address" sequence is crucial; although the N-(4-aminobutyryl)polyamine-based polycationic tail in our analogues is peptide-like in certain respects, the presence of tertiary rather than secondary amide units

- H. Eur. J. Pharmacol. 1982, 85, 121.
- (34) Walker, J. M.; Moises, H. C.; Coy, D. H.; Baldrighi, G.; Akil, H. Science 1982, 218, 1136. Walker, J. M.; Moises, H. C.; Coy, D. H.; Young, E. A.; Watson, S. J.; Akil, H. Life Sci. 1982, 31, 1821.
- (35) Jen, M. F.; Garzon, J.; Loh, H. H.; Lee, N. M. Eur. J. Pharmacol. 1983, 91, 95. Garzon, J.; Sanchez-Blazquez, P.; Gerhart, J.; Loh, H. H.; Lee, N. M. Biochem. Pharmacol. 1984, 33, 2609.
- (36) Lipkowski, A. W.; Tam, S. W.; Portoghese, P. S. J. Med. Chem. 1986, 29, 1222.
- (37) Schwyzer, R. Int. J. Pept. Protein Res. 1988, 32, 476.
- (38) Ho, C.-L.; Ko, J.-L.; Hwang, L.-L.; Wang, K.-T. Int. J. Pept. Protein Res. 1990, 35, 99.
- (39) Kimura, A.; Sasaki-Yagi, Y.; Imanishi, Y. Int. J. Pept. Protein Res. 1990, 35, 550.

would prevent the adoption of a normal peptide-like secondary structure. Another possibility is that the stereochemistry of side-chain projections within the natural "address" sequences is important. A final possibility is that the coulombic role of the cationic side chains is a minor factor superimposed on major issues of conformation and complementarity. Despite the failure of the present effort to shed light on the role of the dynorphin "address" in conferring high activity and κ -selectivity, the overall concept of using peptide-like molecular fragments to construct hybrid analogues of biologically active peptides is a sensible approach, and the design chosen here may prove useful in other applications.

Experimental Section

General Procedures. Details of the general synthetic (e.g., DCC-mediated peptide bond formation) and analytical procedures have been previously described⁴⁰ and are not reproduced here. No attempts were made to maximize yields. In the case of HPLC (Waters Associates μ -BONDAPAK C-18, 3.9 mm × 150 mm column), the analytical conditions for which relative retention time (k' values) are reported were as follows: flow rate = 0.1 mL/min; 0.01% aqueous CF₃COOH with a linear gradient (0-40% v/v) of CH₃CN over 40 min; $\lambda = 210$ and 254 nm. All organic fine chemicals were from Aldrich Chemical Co., and amines were stored at least 24 h over NaOH pellets before use. Amino acid derivatives were purchased from Sigma Chemical Co. and/or prepared by Standard procedures. Combustion analyses were determined by Galbraith Labs, Inc., Knoxville, TN.

1-(Tyr-Gly-Gly-Phe)-4-(4-aminobutyryl)-1,4-diazabutane Dihydrochloride (1a). EDA (25 mL, used as solvent) was cooled in an ice bath and 2.5 g (6.0 mmol) of CBZ-Phe-OpNP was added as a solid in small portions over a 5-min period. The mixture was allowed to warm to room temperature, and excess EDA was removed by repeated concentrations in vacuo using PhCH₃ as an azeotropic "chase". The gummy residue was diluted with 0.6 N HCl (50 mL) and extracted twice with CHCl₃. The aqueous layer was evaporated to dryness and the HCl salt was crystallized from CH₃CN/MeOH (10:1) yielding 1.9 g (85%) of CBZ-Phe-NHCH₂CH₂NH₂HCl (1b) (TLC, MeOH/EtOAc/NH₄OH 1:1:0.01, $R_f = 0.37$, ninhydrin positive).

A solution of the above amine salt 1b (2.8 g, 7.4 mmol) in 10 mL of THF and 1 mL of DMF was added dropwise to a cold solution of 4-phthalimidobutyryl chloride⁴¹ (2.25 g, 8.9 mmol) in 30 mL of anhydrous THF containing Et_3N (2.5 mL, 17.8 mmol) under a N_2 atmosphere. After warming to room temperature, 10 mL of saturated aqueous NaHCO₃ was added to quench the reaction. The THF was removed in vacuo, and the reaction was diluted with 75 mL of CHCl₃. The organic layer was extracted successively with two 50-mL portions each of 0.6 N HCl, half-

(41) Kukalenko, S. S.; Gracheva, N. A.; Chilikin, L. G. J. Org. Chem., U.S.S.R. 1973, 9, 1430.

⁽³²⁾ Lee, N. M.; Smith, A. P. *Trends Pharmacol. Sci.* 1984, 5, 108.
(33) Walker, J. M.; Tucker, D. E.; Coy, D. H.; Walker, B. B.; Akil,

⁽⁴⁰⁾ Jacobson, A. R.; Gintzler, A. R.; Sayre, L. M. J. Med. Chem. 1989, 32, 1708.

saturated aqueous Na₂CO₃, and distilled H₂O, then dried (MgSO₄), and evaporated to dryness. Trituration with Et₂O gave 2.5 g (62%) of the white CBZ-protected intermediate 1c, which ran as a single spot on TLC (CHCl₃/10% MeOH, R_f = 0.66). Removal of the CBZ group (10% Pd on carbon, 760 mm of H₂, 25 °C, EtOH containing a trace amount of HOAc) afforded 1-(phenylalanyl)-4-(4phthalimidobutyryl)-1,4-diazabutane (1d), isolated as the HCl salt. TLC (MeOH/EtOAc/NH₄OH 1:1:0.01, R_f = 0.35) showed a single ninhydrin-positive spot: ¹H NMR (CD₃OD) δ 1.70 (p, 2 H, CH₂CH₂CH₂, J = 7 Hz), 1.93 (t, 2 H, NCH₂CH₂CH₂C=O, J = 7 Hz), 2.93 (m, 8 H), 6.96 (m, 5 H, Phe Ar), 7.24 (m, 4 H, phthalyl ArH).

Compound 1d was coupled directly to CBZ-Tyr-Gly-Gly-OH, prepared as reported,⁴² by the following standard procedure. To 30 mL of DMF at 0-5 °C was added 1.9 g (4.2 mmol) of 1d·HCl, 1.8 g (4.2 mmol) of the CBZ tripeptide, 0.58 mL (4.2 mmol) of Et₃N, 567 mg (4.2 mmol) of HOBt, and, after 5 min, 952 mg (4.6 mmol) of DCC. The solution was allowed to warm to room temperature with mixing overnight and was then filtered. The mother liquor was concentrated in vacuo, diluted with 75 mL CHCl₃, and extracted successively with two 50-mL portions each of 0.6 N HCl, half-saturated aqueous Na₂CO₃, and distilled H₂O. The organic layer was dried (MgSO₄) and concentrated, and the residue was purified by silica gel flash chromatography (Et-OAc/10% MeOH) yielding 1.9 g (56%) of 1-(CBZ-Tyr-Gly-Gly-Phe)-4-(4-phthalimidobutyryl)-1,4-diazabutane (1e); $R_f = 0.55$, EtOAc/10% MeOH.

Final deprotections were accomplished by using known procedures. Compound 1e (1.8 g, 2.16 mmol) was refluxed in EtOH containing 0.34 mL (10.8 mmol) of N_2H_4 under N_2 . The reaction mixture was cooled to room temperature and acidified to pH \sim 4 with glacial HOAc, and the precipitated phthalhydrazide was filtered. The filtrate was concentrated in vacuo, resuspended in EtOH containing 1% (by weight) of 10% Pd on activated carbon, and placed under a gentle stream of H_2 (760 mm) overnight at room temperature. After filtration of catalyst and solvent evaporation, the product was converted to the 2HCl salt and precipitated from solution by the addition of Et₂O, giving 1.1 g (89%) of crude 1a. The hygroscopic material was further purified by recrystallization from MeOH/CH₃CN (1:10), yielding 720 mg (52%) of a white solid: mp 212-215 °C dec; $[\alpha]_D^{25} = 22.4^\circ$ (c = (1.5, MeOH); ¹H NMR (D₂O, CH₂Cl₂ int std) δ 1.79 (p, 2 H, J = 7.7 Hz, $CH_2CH_2CH_2$, 2.17 (t, 2 H, J = 7.7 Hz, $NCH_2CH_2CH_2C=0$, 2.95 (br m, 10 H), 3.77 (m, 4 H, gly CH_2), 4.13 (t, 1 H, J = 6.9 Hz, Tyr α -CH), 4.38 (t, 1 H, J = 6.7 Hz, Phe α -CH), 6.75 and 7.05 (2 d, 2 H each, J = 8.3 Hz, Tyr Ar H), 7.20 (m, 5 H, Phe Ar H). An analytical sample was prepared by semipreparative reverse-phase HPLC (k' = 3.01). Anal. (C₂₈- $H_{39}N_7O_6 \cdot 2HC1 \cdot 0.5H_2O)$ C, H, N.

1-(Tyr-Gly-Gly-Phe)-4,7-bis(4-aminobutyryl)-1,4,7-triazaheptane Trihydrochloride (2a). A solution of 2-bromoethylamine hydrobromide (10.0 g, 49 mmol) in 40 mL of 1 N aqueous NaOH/dioxane (3:1) was cooled to 0 °C, and CBZ-Cl (7.7 mL, 54 mmol) in 5 mL of dioxane was added dropwise under Schotten-Baumann conditions using 5 N NaOH to maintain the pH at 10-11. After warming to room temperature the intermediate CBZ-NHCH₂CH₂Br was extracted into CHCl₃ and directly chromatographed (CHCl₃, $R_f = 0.35$). The yield of viscous oil was 11.7 g (93%). This bromide (5.0 g, 19.2 mmol) was diluted with 10 mL of CHCl₃ and added dropwise with vigorous stirring to 30mL of EDA at 0 °C, and the resulting mixture was allowed to warm to room temperature overnight. The free base of the product CBZ-(NHCH₂CH₂)₂NH₂ (**2b**) was liberated by diluting the reaction with 20 mL of CHCl₃ and adding solid anhydrous K₂CO₃. After filtration, excess EDA was removed by repeated concentrations in vacuo, using a toluene azeotropic "chase". Purification of 2b was by crystallization of the 2 HCl salt from anhydrous 2-propanol, yielding 3.52 g (59%).

Acylation of **2b** using 2.2 equiv of 4-phthalimidobutyryl chloride⁴¹ was carried out as for 1b, giving 1-(benzyloxycarbonyl)-4,7-bis-(4-phthalimidobutyryl)-1,4,7-triazaheptane: ¹H NMR (CDCl₃) δ 1.98 (br p, 4 H, CH₂CH₂CH₂, J = 5.4 Hz), 2.18 (app q, 2 H, NCH₂CH₂CH₂(C=O)NH, app J = 5.4 Hz), 2.36 (t, 2 H, NCH₂CH₂CH₂(C=O)N, J = 5.4 Hz), 3.43 (m, 8 H), 3.59 (m, 4 H), 5.03 (d, 2 H, CH₂ of CBZ group, J = 12.1 Hz), 7.29 (m, 5 H, ArH of CBZ group), 7.68 (m, 8 H, phthalyl ArH). Removal of CBZ was as reported for 1c. Coupling of the deprotected amine (2c) to BOC-Tyr-Gly-Gly-Phe-OCH, the latter prepared by coupling BOC-Tyr-OH to H-Gly-Phe-OCH₂Ph, followed by debenzylation of the ester using H₂ and Pd on activated carbon, gave 1-(BOC-Tyr-Gly-Gly-Phe)-4,7-bis-(4-phthalimidobutyryl)-1,4,7-triazaheptane (8.70 g, 38%): ¹H NMR (CDCl₃) δ 1.37 (s, 9 H), 1.96 (m, 4 H, CH₂CH₂CH₂), 2.20 (m, 4 H, NCH₂CH₂CH₂C=O), 3.69 (br s, 12 H), 4.19 and 4.70 (2 br s, 1 H each, α -CH), 6.74 and 6.96 (d, 2 H, J = 8.0 Hz, Tyr ArH), 7.67 (m, 5 H, Phe ArH), 7.76 (m, 8 H, phthalvl ArH).

Removal of the phthalyl groups was as for 1d, and deprotection of the BOC group was accomplished with 4 N HCl/dioxane (1:4), as reported.⁴³ The final product was crystallized as the 3HCl salt from anhydrous *i*-PrOH, giving 310 mg (41%) of **2a** as a white solid: mp 220-225 °C dec; $[\alpha]_D^{25} = 25.4^{\circ}$ (c = 2.3, MeOH); ¹H NMR (D₂O, CH₂Cl₂ int std) δ 1.79 (m, 4 H, CH₂CH₂CH₂), 2.19 (app q, 2 H, app J = 6.5 Hz, NCH₂CH₂CH₂(C==O)NH), 2.36 (br app s, 2 H, NCH₂CH₂CH₂(C==O)N), 2.88–3.20 (m, 16 H), 3.74 and 3.78 (2 s, 2 H each, CH₂ of Gly), 4.14 (t, 1 H, J = 6.8 Hz, Tyr α -CH), 4.40 (t, 1 H, J = 6.6 Hz, Phe α -CH), 6.70 and 7.04 (2 d, 2 H each, J = 6.8 Hz, Tyr ArH), 7.20 (m, 5 H, Phe ArH). An analytical sample of **2a** was prepared by reverse-phase HPLC (k'= 3.02). Anal. (C₃₄H₅₁N₉O₇·3HCl·H₂O) C, H, N.

1-(Tyr-Gly-Gly-Phe)-5,9-bis(4-aminobutyryl)-1,5,9-triazanonane Trihydrochloride (4a). To a solution of CBZ-Phe-OH (10.0 g, 34 mmol), 3-amino-1-propanol (2.5 mL, 34 mmol), and HOBt (4.6 g, 34 mmol) in 150 mL of CH₂Cl₂ was added DCC (7.7 g, 37 mmol) in 50 mL of CH₂Cl₂ at 5 °C, and the mixture was allowed to stir to room temperature overnight. The mixture was filtered to remove DCU and extracted successively with 0.6 N HCl, half-saturated aqueous Na₂CO₃, and distilled H₂O. Removal of the solvent in vacuo and recrystallization of the residue from 1-propanol/Et₂O afforded 7.8 g (65%) of CBZ-Phe-NHCH₂CH₂CH₂OH. The latter (3.0 g, 8.8 mmol) was converted to the alkyl chloride through reaction with SOCl₂ (0.8 mL, 10.6 mmol) in 30 mL of anhydrous THF containing 1.5 mL (10.6 mmol) of Et_3N . After stirring overnight under N_2 at room temperature, the mixture was concentrated in vacuo, diluted with CHCl₃ (30 mL), and extracted once with half-saturated aqueous Na_2CO_3 . The organic layer was dried $(MgSO_4)$ and concentrated in vacuo to dryness. Recrystallization from CHCl₃/petroleum ether yielded 1.7 g (54%) of CBZ-Phe-NHCH₂CH₂CH₂Cl.

Reaction of the latter alkyl chloride with 1,3-diaminopropane, and the subsequent acylation with 2.2 equiv of 4-phthalimidobutyryl chloride⁴¹ followed by removal of the CBZ group, were carried out according to the procedures used for 2b and 1c/1d, respectively, giving 1-(phenylalanyl)-5,9-bis(4-phthalimidobutyryl)-1,5,9-triazanonane (4b). Coupling of the latter to CBZ-Tyr-Gly-Gly and final deprotections were carried out as for 1e and 1a, respectively. The final product was obtained as the 3HCl salt by crystallization from anhydrous 2-propanol, giving 309 mg (48%) of 4a as a white solid: mp 216-219°C dec; $[\alpha]_D$ = 25.3° (c = 2.2, MeOH); ¹H NMR (D₂O, CH₂Cl₂ int std) δ 1.43 and 1.56 (2 br p, 2 H each, J = 6.85 Hz, NCH₂CH₂CH₂N), 1.81 (br m, 4 H, NCH₂CH₂CH₂C=O), 2.23 (t, 2 H, J = 7.8 Hz, $NCH_2CH_2CH_2(C=0)NH$, 2.39 (dd, 2 H, J = 1.5 and 7.1 Hz, $NCH_2CH_2CH_2(C=0)N$, 2.8–3.2 (br m, 16 H), 3.76 and 3.79 (2 s, 2 H each, Gly CH₂), 4.14 (t, 1 H, J = 6.8 Hz, Tyr α -CH), 4.38 (t, 1 H, J = 6.4 Hz, Phe α -CH), 6.77 and 7.04 (2 d, 2 H each, J= 6.8 Hz, Tyr ArH), 7.20 (m, 5 H, Phe ArH). An analytical sample was prepared by reverse-phase HPLC (k' = 3.06). Anal. (C₃₆- $H_{55}N_9O_7$ ·3HCl· H_2O) C, H, N.

1-(Tyr-Gly-Gly-Phe)-4,7,10-tris(4-aminobutyryl)-1,4,7,10tetraazadecane Tetrahydrochloride (3a). The synthesis of this compound followed closely that of 4a. Coupling of CBZ-Phe-OH with 2-[(2-aminoethyl)amino]ethanol using DCC/HOBt and crystallization of the HCl salt from absolute EtOH gave CBZ-Phe-NHCH₂CH₂NHCH₂CH₂OH (3b) in 33% yield: ¹H NMR (free base, CDCl₃) δ 2.22 (br s, 2 H, NH and OH), 2.58 (app

⁽⁴³⁾ Bodanzsky, M.; Ondetti, M. A. Peptide Synthesis; Interscience: New York, 1966.

p, 4 H, app J = 4.1 Hz, CH_2NHCH_2), 3.08 (d, 2 H, J = 7.6 Hz, Phe CH₂), 3.28 (app q, 2 H, app J = 4.1 Hz, (C==O)-NHCH₂CH₂NH), 3.55 (t, 2 H, J = 5.4 Hz, NHCH₂CH₂OH), 4.42 (dd, 1 H, J = 7.6 and 17.2 Hz, α -CH), 5.01 (s, 2 H, CBZ CH₂), 5.70 (d, 1 H, J = 8.0 Hz, CBZ-NH), 6.54 (t, 1 H, J = 4.1 Hz, Phe-NH), 7.24 (m, 10 H, ArH).

Conversion of **3b** to the corresponding alkyl chloride with SOCl₂, reaction with EDA, acylation by 3.3 equiv of 4-phthalimidobutyryl chloride,⁴¹ and removal of the CBZ group gave 1-(phenylalanyl)-4,7,10-tris(4-phthalamidobutyryl)-1,4,7,10-tetraazadecane (**3c**): ¹H NMR (D₂O/HOAc-d₄) δ 1.85 (m, 6 H, CH₂CH₂CH₂), 2.40 (m, 6 H, NCH₂CH₂CH₂C=O), 3.36 (m, 20 H), 4.25 (t, 1 H, J = 8.0 Hz, α -CH), 7.29 (m, 5 H, Phe ArH), 7.74 (m, 12 H, phthalyl ArH).

Coupling of 3c to CBZ-Tyr-Gly-Gly-Gly followed by deprotection of phthalyl and CBZ groups, conversion to the HCl salt, and recrystallization from anhydrous 2-propanol/methanol, gave 1.0 g (6% overall yield) of 3a as a white solid: mp 230–234°C dec; $[\alpha]_D^{25} = 20.7^{\circ}$ (c = 3.3, MeOH); ¹H NMR (D₂O, CH₂Cl₂ int std) δ 1.79 (br m, 6 H, CH₂CH₂CH₂), 2.24 (app q, 2 H, J = 7.3 Hz, NCH₂CH₂CH₂(C=O)NH), 2.38 (br m, 4 H, NCH₂CH₂CH₂CH₂(C=O)N), 2.88–3.30 (br m, 22 H), 3.74 and 3.78 (2 s, 2 H each, Gly CH₂), 4.14 (t, 1 H, J = 6.8 Hz, Tyr α -CH), 4.40 (br t, 1 H, J = 6.5 Hz, Phe α -CH), 6.74 and 7.04 (2 d, 2 H each, J = 6.8 Hz, Tyr ArH), 7.20 (m, 5 H, Phe ArH). An analytical sample was prepared by reverse-phase HPLC (k' = 2.83). Anal. (C₄₀H₆₃N₁₁O₈·4H-Cl·5H₂O) C, H, N.

1,4,7-Tris(4-aminobutyryl)-1,4,7-triazaheptane Trihydrochloride (5). To 1.5 g (6.0 mmol, 3.5 equiv) of 4-phthalimidobutyryl chloride⁴¹ in 40 mL of anhydrous THF containing 2.4 mL (60.0 mmol) of Et₃N cooled to -78 °C was added dropwise over a 30 min period 0.18 mL (1.7 mmol) of diethylenetriamine in 5 mL of anhydrous THF under a N₂ atmosphere. After addition was complete the reaction was allowed to warm to room temperature, then filtered, and the filtrate was concentrated in vacuo. Recrystallization from CHCl₃/Et₂O yielded 800 mg (63%) of 1,4,7-tris(4-phthalimidobutyryl)-1,4,7-triazaheptane: ¹H NMR (CDCl₃) δ 1.99 (br p, 6 H, J = 5.9 Hz, CH₂CH₂CH₂), 2.23 (dt, 2 H, J = 5.9 Hz, NCH₂CH₂CH₂(C=O)NH), 2.42 (t, 2 H, J = 5.9 Hz, NCH₂CH₂CH₂(C=O)N), 3.40 (br s, 8 H), 3.70 (m, 6 H, NCH₂CH₂CH₂(C=O)), 6.72 and 6.84 (2 br s, 1 H each, amide NH), 7.73 (m, 12 H, phthalyl ArH).

Removal of the phthalyl groups was as for 1d. The final product was crystallized as the 3HCl salt from EtOH/*i*-PrOH, giving ~200 mg (25% overall yield) of 5 as a very hygroscopic material (no combustion analysis could be obtained): ¹H NMR (D₂O, CHCl₃ int std) δ 1.48 (p, 6 H, J = 7.6 Hz, CH₂CH₂CH₂), 1.90 (app q, 4 H, app J = 7.3 Hz, CH₂CH₂CH₂(C=O)NH), 2.12 (t, 2 H, J = 7.3 Hz, CH₂CH₂CH₂(C=O)NH), 2.55 (app q, 6 H, J = 7.8 Hz, CH₂NH₃⁺), 3.00 (m, 8 H).

Bioassays. The affinity of the synthetic compounds for opioid receptor types in brain membranes from male Hartley guinea pigs was assessed by standard radioligand competitive binding at 25 °C in the presence of 100 mM NaCl, as previously described.⁴⁴ The final concentrations of labeled ligands used were as follows: 0.5 nM [³H]naloxone (μ -binding), 0.7 nM [³H]DADLE in the presence of 4 nM sufentanil (δ -binding), and 1 nM (-)-[³H]EKC in the presence of 500 nM DADLE and 20 nM sufentanil (κ binding). The activity of the synthetic compounds was not changed upon addition of 50 μ g/mL bacitracin (data not shown). The pharmacologic activity of the compounds was assessed with the electrically stimulated intact ileum from male albino Hartley guinea pigs at 37 °C as previously described.⁴⁰

Acknowledgment. We thank Dr. Alan Gintzler, Department of Biochemistry, State University of New York, Health Sciences Center at Brooklyn, for permitting us to carry out the GPI assay in his lab under his guidance. This work was supported by the American Heart Association (83 990) with partial contribution by the Northeast Ohio Affiliate, and in part by NIH Grant NS 18714. L.M.S. acknowledges a NIH Research Career Development Award (1987–1992).

(44) Tam, S. W. Eur. J. Pharmacol. 1985, 109, 33.

Monoterpenic Fragment Analogues of Aplasmomycin as Potential Antimalarials

N. Balu, Jacob V. Thomas, and Sujata V. Bhat*

Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 076, India. Received October 23, 1990

Seven analogues of monoterpenic fragment of aplasmomycin were synthesized as targeted antimalarial agents. The potency of the compound 6 was comparable with the sesquiterpene lactone artemisinin and the antibiotic aplasmomycin in vivo against *Plasmodium berghei yoelli*.

Aplasmomycin (1), a boron-containing ionophoric antibiotic isolated from marine Streptomyces griseus, was found to be active against Plasmodium berghei (NK 65) in vivo.¹ Several cyclic sesquiterpene peroxides^{2,3} also exhibit antimalarial activity against a variety of parasite strains and the most notable are the endoperoxide sesquiterpene lactone artemisinin (2) and its derivatives.⁴⁻⁷ The efficacy of these sesquiterpene derivatives was attributed in part on the observation that the parasitized red cells are selectively damaged by the oxidants, suggestive of an oxidative mechanism.^{8,9} The presence of the ter-

- (1) Okami, Y.; Okazaki, T.; Kitahara, T.; Umezawa, H. J. Antibiot. 1976, 29, 1019.
- (2) Khomchenovskii, E. I. Zh. Vses. Khim. Ova. im. D. I. Mendeleeva 1986, 31(1), 102; Chem. Abstr. 1986, 105, 90545v.
 (2) Khomchenovskii, L. L. Katalan, S. Ka
- (3) Xiao-tian, L. Adv. Chin. Med. Mat. Res. 1985, 427.
- (4) Quinghaosu Antimalaria Coordinating Research Group, Chin. Med. J. 1979, 92, 811.
- (5) Klayman, D. L. Science (Washington, D.C.) 1985, 228, 1049.
- (6) Luo, X. D.; Shen, C. C. Med. Res. Rev. 1987, 7, 29.
- (7) Wu, J.; Ji, R. Zhongguo Yaoli Xuebao 1982, 3(1), 55.

penoidal moiety in 1 and 2 led us to the investigation of the structure-antimalarial activity relationship of monoterpenic fragment analogues of aplasmomycin.

In the present investigation seven analogues (4-10) of monoterpenic aplasmomycin fragment and a hemiterpenic ester (3) were synthesized and evaluated for antimalarial

0022-2623/91/1834-2821\$02.50/0 © 1991 American Chemical Society

⁽⁸⁾ Vennerstrom, J. L.; Eaton, J. W. J. Med. Chem. 1988, 31, 1269 and references cited therein.

⁽⁹⁾ Gu, H. M.; Lu, B. F.; Qu, Z. X. Acta Pharmacol. Sinica 1980, 1, 48.