222 Communications SYNTHESIS

reaction with salts of dialkyl hydrogen phosphites¹. However, no generally useful procedure for the conversion of primary amines into phosphonic esters has hitherto been reported; it has only been mentioned briefly² that diethyl phenylmethanephosphonate may be obtained in 30% yield by reaction of benzyldiethylamine with triethyl phosphite and methyl iodide.

We describe here an efficient method for the three-step conversion of arylmethanamines (1) and hetero analogs into arylmethanephosphonic esters (3) via 1-arylmethyl-4,6-diphenyl-2-methylthiopyridinium iodides (2). This method represents a useful alternative to the Michaelis-Arbusov reaction in cases in which the alkyl halide is not readily available or unstable.

$$\begin{bmatrix} Ar - CH_2 - NH_2 & \longrightarrow & \end{bmatrix} \xrightarrow{C_6H_5} & J \ominus \\ 1 & & & SCH_3 \\ Ar & CH_2 & 2 & \\ & & & Ar - CH_2 - P & OC_2H_5 \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Synthesis of Diethyl Arylmethanephosphonates from Arylmethanamines

P. M. FRESNEDA, P. MOLINA*

Departamento de Quimica Orgánica, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain

One of the most versatile methods for the synthesis of alkyl phosphonates consists of the reaction of a trialkyl phosphite with an alkyl halide. This Michaelis-Arbusov rearrangement is complemented by the Michaelis-Baker-Nylen rearrangement, i.e., the nucleophilic substitution of halogen in alkyl halides by

The pyridinium iodides 2 are readily available by reaction of amine 1 with 4,6-diphenylpyran-2-thione (first step) followed by methylation with methyl iodide (second step)³. Compounds 2 are subjected to the reaction with triethyl phosphite at 150–170 °C for 4 h whereupon the phosphonates 3 are isolated by distillation in 70–88% yields.

Diethyl Arylmethanephosphonates (3); General Procedure:

A mixture of the 1-arylmethyl-4,6-diphenyl-2-methylthiopyridinium iodide (2; 2 mmol) and triethyl phosphite (3 mmol) is heated under nitrogen at 150-170 °C for 4 h. The excess triethyl phosphite is removed by distillation to 100 °C at reduced pressure; the residue is distilled under vacuum to give product 3 as a clear colorless liquid. The solid remaining in

Table. Diethyl Arylmethanephosphonates (3)

Ar	Reaction temperature [°C]	Yield ^a [%]	b.p./torr [°C]		$\mathfrak{n}_{\mathrm{D}}^{20}$	
			found	reported or Molecular formula ^b	found	reported
	160	78	172°/25	105°/0.4 ⁴	1.4960	1.49644
H ₃ C-(160	79	175°/3	132-137°/0.7 ⁵	1.4952	1.49585
H₃CO-√->-	170	88	176-178°/3	143°/16	1.5038	1.50306
cı—(¯)—	150	86	180°/3	C ₁₁ H ₁₆ ClO ₃ P (262.6)	1.4940	
Ç]	160	77	160-163°/3	C ₁₁ H ₁₆ ClO ₃ P (262.6)	1.5067	ALL SE
H ₃ CO————————————————————————————————————	150	73	187-190°/3	$C_{13}H_{21}O_5P$ (288.3)	1.5178	
0	150	70	140-142°/3	117-120°/2 ⁷	1.4665	1.46707

^a Yield of distilled product.

^b The microanalyses were in good agreement with the calculated values: C, ± 0.22 ; H, ± 0.25 ; Cl, ± 0.17 ; P, ± 0.21 .

the distillation flask is almost pure 4,6-diphenyl-2-methylthiopyridine (4); m.p. 90 °C (Ref.³, m.p. 93 °C).

The ¹H-N.M.R. spectra of all phosphonates 3 show a doublet at δ =3.0 ppm ($J_{\rm PH}$ =21.5 Hz); G.L.C. analysis (Carbowax 20 M/180 °C) shows uniformly no impurities.

Received: June 19, 1980 (Revised form: August 4, 1980)

223

^{*} Address for correspondence.

G. Kosolapoff, Organophosphorus Compounds, John Wiley & Sons, New York, 1950, Chapter 7.

P. C. Crofts, Quart. Rev. 12, 341 (1958).

² B. E. Ivanov, S. S. Krokhina, Izv. Akad. Nauk SSSR Ser. Khim. 1970, 2629; C. A. 75, 60345 (1971).

³ A. Lorenzo, P. Molina, M. J. Vilaplana, Synthesis 1980, 854.

⁴ A. Meisters, J. M. Swan, Aust. J. Chem. 18, 163 (1965).

N. N. Melnikov, Y. A. Mandelbaum, Z. M. Bakanova, Zh. Obshch. Khim. 31, 3953 (1961); J. Gen. Chem. USSR 31, 3687 (1961).

⁶ B. E. Ivanov, L. A. Valitova, Izv. Akad. Nauk SSSR Otdel. Khim. Nauk 6, 1049 (1963); C. A. 59, 7555 (1963).

⁷ B. A. Arbuzov, B. P. Lugovkin, Zh. Obshch. Khim. 22, 1193 (1952); C. A. 47, 4871 (1953).