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Abstract: A range of 2-substituted 2,3-dihydro-1H-quinolin-4-
ones have been synthesized from anilines by a two-step process in-
volving Sonogashira coupling with a propargyl alcohol then acid-
catalyzed cyclization of the resulting 2-(3¢-hydroxypropy-
nyl)anilines. The cyclization reaction appears to proceed via re-
gioselective rearrangement of the propargyl alcohol to an a,b-
unsaturated ketone (Rupe rearrangement) and then 6-endo-trig ring
closure (Donnelly–Farrell cyclization). The isolation of the a,b-
unsaturated ketone intermediate in one example supports this path-
way.

Key words: quinolinone, Sonogashira coupling, Rupe rearrange-
ment, cyclization, alkaloids, alkynes

Quinolines and quinolinones constitute the core unit of
numerous alkaloids and synthetic compounds with inter-
esting pharmacological properties.1,2 2-Substituted 2,3-di-
hydro-1H-quinolin-4-ones have shown analgesic3 and
antimalarial4 activity and have attracted attention recently
as antimitotic antitumor agents.5,6 Interest in these com-
pounds led to a significant number of synthetic methods
being described in the literature for their preparation.7–16

However, the direct preparation of 2,3-dihydro-1H-quin-
olin-4-ones from readily available anilines has received
relatively little attention.9,13,16

Here, we report a general and straightforward approach to
2,3-dihydro-1H-quinolin-4-ones 4 via a two-step process
which starts from readily available 2-(pseudo)halogenat-
ed anilines 1. The process involves Sonogashira coupling
with a propargylic alcohol 2,17,18 followed by a Brønsted
acid catalyzed cyclization of the resulting 2-(3¢-hydroxy-
propynyl)anilines 3 to give quinolin-4-ones 4 (Scheme 1).

2-Methylbut-3-yn-2-ol (2a, R3 = R4 = Me) has been used
widely as a readily available, cheap, nonvolatile protected
form of acetylene (cf. e.g., TMS-acetylene) which is un-
masked via thermolysis in the presence of base with evo-
lution of acetone.19,20 It was in the context of the use of
this reagent as a partner for Sonogashira coupling with 2-
trifloxy-N-acetylaniline (1a) that we serendipitously dis-
covered the facile cyclization process described herein.

Thus, following Pd/Cu-catalyzed coupling to yield alky-
nyl aniline 3a in 76% yield, attempted acid-catalyzed hy-
drolysis of the acetamide by heating in concentrated HCl–
H2O (1:1, v/v), was found to furnish dimethyl-2,3-dihy-
dro-1H-quinolin-4-one (4a) in 98% yield after basic
workup and chromatographic purification (Scheme 2).

Scheme 1 Synthesis of 2,3-dihydro-1H-quinolin-4-ones 3: (a)
Sonogashira coupling, (b) acid-catalyzed cyclization

Scheme 2 Synthesis of 2,2-dimethyl-2,3-dihydro-1H-quinolin-4-
one (4a). Reagents and conditions: (a) 2-methylbut-3-yn-2-ol (2a),
PdCl2(PPh3)2, CuI, Ph3P, pyridine, Et3N, 90 °C, 3 h (76%); (b) concd
HCl, H2O, 120 °C, 1.5 h (98%).

To determine the scope of this ring closure, we investigat-
ed the synthesis and acid-catalyzed cyclization of a range
of 2-(3¢-hydroxypropynyl)anilines.

A series of Sonogashira coupling reactions were carried
out between 2-methylbut-3-yn-2-ol (2a) and 2-trifloxy-
and 2-bromo-N-acetylanilines 1a–d and 2-bromo- and 2-
iodoanilines (1e,f) using standard conditions involving
Pd(II)/Cu(I) pre-catalysts.21 The 2-trifloxy-N-acetyl-
anilines were synthesized from the corresponding 2-hy-
droxyanilines by N-acetylation (Ac2O in AcOH) then O-
triflation (Tf2O, pyridine in CH2Cl2). Moderate to good
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yields were obtained for all these Sonogashira coupling
reactions (Table 1).22,28

The ring-closure reactions of these 2-alkynylanilines 3 to
give the quinolin-4-ones 4 were performed in all cases by
heating at 120 °C in concentrated HCl–H2O (1:1, v/v) fol-
lowed by basic workup, as for the initial example de-
scribed above (Table 2).29

The electron demand of substituents on the aryl ring ap-
peared to have no significant effect on the cyclization pro-
cess. The yields ranged from 60–98% with the exception
of the 4-trifluoromethyl derivative 3e which was obtained
in just 35% yield. Both the aniline 1e and the 2-alkynyla-
niline 3e leading to this product were observed to have
low thermal stability; probably explaining the reduced
yields in this sequence. The acetamide is not critical for
successful cyclization as the free aniline 3f cyclized effi-
ciently, albeit in reduced yield relative to its acetamide an-
alogue 3a (cf. entries 1 and 6, Table 2).

We envisage that the cyclization, in the case of the free
aniline 3f, probably proceeds via regioselective hydra-
tive–dehydrative rearrangement of the alkyne moiety,
possibly via aldol I, to give a,b-unsaturated ketone II,

then 6-endo-trig Michael-type ring closure to give quino-
lin-4-one 4f (Scheme 3).

The acid-catalyzed rearrangement of propargylic alcohols
to a,b-unsaturated ketones (cf. 3f → II) is known as a
Rupe rearrangement23 and may proceed as indicated in
Scheme 3 or via an allenyl intermediate with assistance
from the 2-amino group.24 The cyclization of 2-aminoch-
alcones to 2-aryl-2,3-dihydro-1H-quinolin-4-ones (cf. II
→ 4f) is also well documented25 and the acid-catalyzed
variant is sometimes referred to as a Donnelly–Farrell cy-
clization.11,12 However, our tandem Rupe rearrangement–
Donnelly–Farrell cyclization to give quinolin-4-ones is
new and potentially provides access to a wider variety of
eventual C2 substituents than have been accessible from
chalcones.

For the cyclization of the N-acetyl compounds 3a–d, ace-
tamide hydrolysis, at least in the case of the 4-trifluo-
romethoxy-substituted substrate 3d occurs in situ
immediately prior to ring closure as evidenced by our iso-
lation after four hours of an approximately 1:1 mixture of
the expected quinolin-4-one 4d and the N-acetyl-a,b-
unsaturated ketone 5 (Scheme 4).

When compound 5 was resubjected to the same conditions
for additional four hours, complete conversion into quin-
olin-4-one 4d was achieved. Direct conversion of anilide
3d into quinolin-4-one 4d required eight hours (Table 2,
entry 5, 60% yield).

With the aim to further widen the scope of this new ap-
proach, we investigated the introduction of different
groups at C2 of the quinolin-4-one ring. Thus, we synthe-
sized 2-ethynylaniline 6 from 2-iodoaniline (1f) by Sono-
gashira coupling with trimethylsilylacetylene then
protonolysis of the trimethylsilyl group. Deprotonation of
this terminal alkyne (BuLi) and quenching with benzalde-
hyde gave propargyl alcohol 3g (R2 = H, R3 = Ph) in 26%

Table 1 Sonogashira Coupling To Give 2-Alkynylanilines 328

Entry X R1 R2 Time (h) Yield (%)

1 OTf Ac H 3 76 (1a → 3a)a

2 OTf Ac 5-Cl 1.5 57 (1b → 3b)

3 OTf Ac 5-Me 2 43 (1c → 3c)

4 Br Ac 4-F3CO 3 67 (1d → 3d)

5 Br H 4-F3C 3 42 (1e → 3e)

6 I H H 3 63 (1f → 3f)

a As described in the text (Scheme 2).
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Table 2 Acid-Catalyzed Ring Closure of 2-Alkynylanilines 3 To 
Give 2,3-Dihydro-1H-quinolin-4-ones 429

Entry R1 R2 Time (h) Yield (%)

1 Ac H 1 98 (3a → 4a)a

2 Ac 5-Cl 1.5 68 (3b → 4b)

3 Ac 5-Me 4 70 (3c → 4c)

4 Ac 4-F3CO 8 60 (3d → 4d)

5 H 4-F3C 4 35 (3e → 4e)

6 H H 1.5 70 (3f → 4a)

a As described in the text (Scheme 2).
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unoptimized yield. Reaction with acetophenone required
transmetalation to the organocerate (CeCl3)

26,27 to sup-
press enolization but gave propargyl alcohol 3h (R2 = Me,
R3 = Ph) in 60% yield (Scheme 5).

Scheme 5 Reagents and conditions: (a) i. TMS-acetylene,
PdCl2(PPh3)2, CuI, PPh3, i-Pr2NH, toluene, r.t., 16 h; ii. KOH,
MeOH–H2O, r.t., 3 h (38%); (b) n-BuLi, THF, –5 °C to r.t. (6 → 3g,
R2 = H, R3 = Ph, 26%) or n-BuLi, CeCl3, THF, –5 °C to r.t. (6 → 3h,
R2 = Me, R3 = Ph, 60%); (c) concd HCl, H2O, 120 °C, 1.5 h (7a,
R2 = H, R3 = Ph, 50%; 7b, R2 = Me, R3 = Ph, 26%).

After heating at 120 °C in concd HCl–H2O (1:1, v/v) as
previously, we were very pleased to observe that quinolin-
4-ones 7a (R2 = H, R3 = Ph) and 7b (R2 = Me, R3 = Ph)
were obtained in 50% and 26% yields, respectively. No
attempt was made to optimize these yields but it is appar-
ent that the process is applicable to the synthesis of quin-
olin-4-ones with alternative substitution patterns at C2.

In conclusion, we have reported a straightforward method
for the preparation of 2-substituted-2,3-dihydro-1H-quin-
olin-4-ones by acid-catalyzed cyclization of 2-(3¢-hydrox-
ypropynyl)anilines. These substrates can be prepared
from readily available 2-bromo-, 2-iodo-, and 2-trifloxy-
anilines or N-acetylanilines via Sonogashira coupling,
making the route attractive for accessing this class of het-
erocycle which is found in many biologically active sub-
stances. For the free aniline substrates ring closure is
postulated to comprise Rupe rearrangement–Donnelly–
Farrell cyclization whereas for the N-acetylanilines it
comprises Rupe rearrangement–acetamide hydrolysis–
Donnelly–Farrell cyclization.

Supporting Information for this article comprising full expe-
rimental details and spectroscopic data is available online at http://
www.thieme-connect.com/ejournals/toc/synlett.
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extracted twice with EtOAc, and the combined organic 
phases were dried over MgSO4, filtered, and concentrated in 
vacuo. The desired products were purified by flash 
chromatography.
N-[2-(3-Hydroxy-3-methylbut-1-ynyl)phenyl]acetamide 
(3a)
Colorless oil (76% yield). ESI-HRMS: m/z calcd for 
C13H15NO2Na: 240.1000; found: 240.1001 (D = 0.4 ppm). 
ESI-MS: m/z (%) = 240 (95) [MNa+], 200(100). 1H NMR 
(400 MHz, CDCl3): d = 8.29 (d, J = 8.3 Hz, 1 H, 6-H), 7.81 
(br s, 1 H, NH), 7.31 (dd, J = 7.7, 1.3 Hz, 1 H, 3-H), 7.26 (td, 
J = 8.3, 1.5 Hz, 1 H, 5-H), 6.96 (t, J = 7.4 Hz, 4-H), 2.15 (s, 
3 H, CH3CONH), 1.61 [s, 6 H, C(CH3)2OH]. 13C NMR (101 
MHz, CDCl3): d = 168.4 (s, CO), 138.9 (s, Ar), 131.5 (d, Ar), 
129.7 (d, Ar), 123.4 (d, Ar), 119.4 (d, Ar), 111.4 (s, Ar), 
101.5 (s, 2 C, C≡), 65.7 [s, C(CH3)2OH], 31.5 [q, 2 C, 
C(CH3)2OH], 24.8 (q, CH3CO). IR: nmax = 3360, 2924, 2853, 
2400, 1662, 1523, 1447 cm–1.

(29) General Procedure for the Acid-Catalyzed Cyclization
Sonogashira coupling product 3a–h was dissolved in concd 

HCl–H2O (1:1, v/v; 0.1 M) and heated at 120 °C for 1.5–8 h 
(see Table 2). The reaction mixture was then concentrated in 
vacuo. Water was then added followed by K2CO3 up to 
pH = 11. The mixture was extracted twice with EtOAc, and 
the combined organic phases were dried over MgSO4, 
filtered, and concentrated in vacuo. Final quinolinones were 
purified by flash chromatography.
2,2-Dimethyl-2,3-dihydro-1H-quinolin-4-one (4a)
Yellow oil (70% yield). ESI-HRMS: m/z calcd for 
C11H14NO: 176.1075; found: 176.1071 (D = –2.3 ppm). ESI-
MS: m/z (%) = 176 (78) [MH+], 120 (100). 1H NMR (400 
MHz, CDCl3): d = 7.83 (dd, J = 7.9, 1.4 Hz, 1 H, Ar), 7.35–
7.27 (m, 1 H, Ar), 6.71 (m, 1 H, Ar), 6.63 (d, J = 8.2 Hz, 1 
H, Ar), 4.18 (s, 1 H, NH), 2.61 (s, 2 H, 3-H), 1.35 [s, 6 H, 
NC(CH3)2]. 

13C NMR (100 MHz, CDCl3): d = 194.0 (s, CO), 
149.8 (s, Ar), 135.4 (d, Ar), 127.2 (d, Ar), 118.1 (d, Ar), 
117.5 (d, Ar), 115.8 (s, Ar), 53.6 (s, 2-C), 50.6 (t, 3-C), 27.7 
(q, 2 C, CH3). IR: nmax = 3333, 2924, 2853, 1659, 1613, 1481 
cm–1.
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