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Summary: A convenient method for the transformation of suitably protected propargyl alcohols into 3,5- 
disubstiuted butenolides has been developed. This organozirconium-based method transforms 
optically active propargyl alcohols into the corresponding butenolides with no loss of optical activity. 

The past few years have witnessed a flurry of activity in the area of butenolide synthesis.2 In 

addition to the inherent interest in these molecules, they have been utilized as vehicles for the 

stereospecific construction of acyclic carbon chains bearing multiple chiral centers.3 While many 

methods exist for the preparation of butenolides, 214 few allow for the preparation of the those versions 

substituted in both the 3 and 5 positions as in 1. Of these, there are, to our knowledge, no general 

methods which have been demonstrated to give optically active butenolides of type 1. We have 

developed a unique route to 1 from suitably protected propargyl alcohols to 1 as described below. 

Moreover, this methodology can be used to readily prepare optically active versions of 1. 

Shown in Scheme 1 is our method for the conversion of protected propargylic alcohols5 into the 

butenolides 1. Hydrozirconation of protected propargyl alcohol provides vinyl zirconocene 2 .s 
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Without isolation this is carbonylated to give the corresponding acyl zirconocene complex 3.7 Both of 

these first two steps are carried out essentially as described by Schwartz in his pioneering work on 

hydrozirconation.s.7 In situ treatment of 3 with 12 provides the butenolides 1, in good yield, for this one 

pot procedure, after standard organic workup and isolation by silica gel chromatography. We presume 

that the iodination of 3 produces the E a$-unsaturated acyl iodide 4. In the presence of excess I2 4 is in 

equilibrium with its Z-isomer 5. The electrophilic nature of acyl iodides is well precedented and the acyl 

carbon in 5 is subjected to intramolecular nucleophilic attack by the adjacent ether oxygen to form the 

zwitterionic intermediate 6. Loss of Rsl from 6 gives butenolide 1. Not unexpectedly, benzyl alcohol 

and triphenylsilanol are produced during the aqueous workup of reactions in which Rs is respectively, 
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benzyl or triphenylsilyl. A summary of our results are shown in Table 1. A wide variety of protecting 

groups can be utilized in this reaction sequence, the most generally useful being either the triphenylsilyl 

or benzyl groups. 

It is noteworthy that we are able to form the intermediate acyl iodides 3 and 4 under essentially 

neutral conditions. These highly reactive species are usually formed under highly acidic conditions or 

by treatment of carboxylic acids with powerful Lewis Acids. s We are continuing to investigate the 

synthetic utility of acyl iodides generated under these mild conditions. 

In entries 9 and IO, the free alcohol, in benzene, is treated with CpnZrCln in the presence of 

triethylamine (1 eq) to form the zirconium alkoxide 7 as shown in Scheme 2. Without isolation 7 is 

subjected to the hydrozirconation, carbonylation, iodination sequence to give the spirobutenolide 

Scheme 2 
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products in 60% isolated yield. 

Of great practical importance was the determination that, starting with an optically active 

substrate, no loss of optical purity was experienced in going to the product 1,9 as is shown in scheme 3. 

Scheme3 

(S)-8 82&3 % ee (S)-9 823 % ee 

(S)-10 9Ok3%ee (S)-11 90&3 % ee 

In summary we have developed an efficient, one pot method for the conversion of protected 

propargyl acohols into the corresponding butenolides. This procedure allows the utilization of several 

different common protecting groups and in some instances the free alcohols can be utilized. We have 

shown that, if optically active substrates are employed, the product butenolides are produced with no 

loss of optical activity. Since these butenolides can serve as progenitors for a variety of 

stereospecifically substituted acyclic structures, this method should be a useful addition to the repertoire 

of synthetic organic chemists. 
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Table 1 

Entry Substrate 
0SiPh3 

1 CH,CH,CH,CEC ACH 3 

OTMS 

2 CH3CH&H&EC ACH 3 
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CH,CH&-_C ACH 3 
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