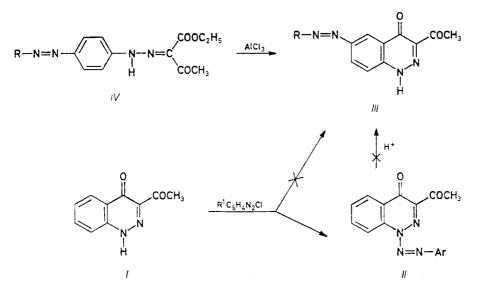
SYNTHESIS OF 1-ARYLAZO-3-ACETYL-1*H*-CINNOLIN-4-ONE DERIVATIVES

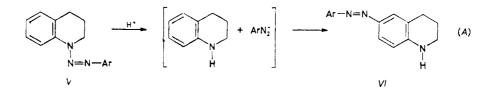

Mohamed S. ABBADY and Abd El-Aal M. GABER

Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt

Received July 17, 1991 Accepted October 3, 1991

The biological activity of azocinnoline derivatives especially in the chemotherapy of *Trypanosomiasis* was already reported¹⁻³. In 1971 for the first time pyridazine derivatives were found in nature⁴ and quite recently another naturally occurring derivative (nigellicine)⁵ has been described⁶.

Considering the foregoing and in continuation of our previous work⁷, 3-acetyl-1H-cinnolin-4-one (I) has been well exploited as a coupling component. Compound I has two potentially nucleophilic centres, i.e. position 1 and 6 and was expected to undergo azo-coupling reaction at either or both of these positions. In fact, reaction of I with aryldiazonium salts proceeds smoothly in aqueous ethanol in the presence


In formula $\parallel: \sigma, R^1 = H$ b, $R^1 = \rho - CH_3$ c, $R^1 = \rho - OCH_3$ d, $R^1 = \rho - NO_2$ e, $R^1 = \rho - Br$ f, $R^1 = \sigma - COOH$ g, $R^1 = \rho - SO_3H$

SCHEME 1

Collect. Czech. Chem. Commun. (Vol. 57) (1992)

of sodium carbonate to give red coloured dyes identified as 1-arylazo-3-acetyl-1*H*--cinnolin-4-ones (*II*) (Scheme 1).

On the other hand, it was reported that the diazoimino derivatives of tetrahydroquinoline (V) are rearranged in dilute mineral acid to the isomeric 6-areneazotetrahydroquinoline⁸ (VI) (Equation (A)). Attempts at rearrangement of IIa by boiling

dilute hydrochloric acid to give the isomeric 6-arylazo-3-acetyl-1*H*-cinnolin-4-one (*III*) were unsuccessful. Compound *III* ($\mathbf{R} = C_6 \mathbf{H}_5$) was prepared by another route, by intramolecular cyclization of ethyl acetoacetate (4-phenylazo)phenylhydrazone (*IV*), which was prepared by coupling of diazotized 4-aminoazobenzene with ethyl acetoacetate by anhydrous AlCl₃ in chlorobenzene (Scheme 1).

Com- pound	λ _{max} ^a	$\varepsilon_{\rm max} 10^{-3,a}$	λ _{max}	$\varepsilon_{\rm max} 10^{-3}$	λ _{max}	$\varepsilon_{\rm max} 10^{-3}$
1	350	23.333	296 sh 286 sh	4·666 3·999	242	11.833
11 a	440	23.666	300 260	17·333 10·333	250	11.666
IIb	442	24·83 3	306	17.166	254	11.666
llc	450	26.833	322	18.333	252	13-999
11d	434	16· 99 9	304	8.833	248	6.499
lle	442	23.66 6	306 260 sh	15-999 9- 66 6	254	10.666
llf	434	25.333	300	19.666	244	10.166
llg	358	32.333	308 sh 298 sh	6·333 5·499	253	18.333
111	402	40.500	300 br	4.250	246	10.500

1	ABLE I					
UV	spectra	of	compounds	I — III	(Scheme	1)

^{*a*} λ_{\max} in nm and ϵ_{\max} in mol⁻¹ cm².

EXPERIMENTAL

All melting points are uncorrected and were recorded on Fisher-Johns melting point apparatus. ¹H NMR were obtained on 90 MHz Varian spectrometer in δ ppm relative to TMS. Electronic spectra were recorded on a Shimadzu UV 200S spectrophotometer using 1 cm matched silica cells.

3-Acetyl-1*H*-cinnolin-4-one (*I*)

This compound was prepared by cyclization of ethyl 2-(phenylhydrazono)-3-oxobutanoate with $AlCl_3$ in chlorobenzene as cited in ref.⁷.

1-Arylazo-3-acetyl-1H-cinnolin-4-ones (IIa-IIg)

General procedure. A solution of diazotized aryl amine (0.01 mol) was added gradually with stirring to a solution 3-acetyl-1*H*-cinnolin-4-one (0.01 mol) in aqueous sodium carbonate (200 ml,

Compound	М.р. °С	Yield %	Formula	Calculated/Found			
			M.w.	% C	% Н	% N	
IIa	125-127	95	C ₁₆ H ₁₂ N ₄ O ₂ 292·30	65·75 66·05	4·14 4·30	19•17 18•95	
IIb	132-135	93	$C_{17}H_{14}N_4O_2$ 306·32	66·66 66·42	4·61 4·25	18·29 17·98	
llc	130	90	$C_{17}H_{14}N_4O_3$ 322.32	63·35 63·50	4·38 4·30	17·38 17· 2 7	
IId	182-185	75	$C_{16}H_{11}N_5O_4$ 337·29	56·98 56·78	3·29 2·95	20∙76 20∙70	
lle	158-160	80	$C_{16}H_{11}N_4O_2Br$ 371·19	51·77 51· 6 7	2·99 3·15	15·09ª 14·94	
llf	195	78	$C_{17}H_{12}N_4O_4$ 336·30	60·71 60·87	3∙60 3∙65	16∙66 16∙64	
IIg	160-162	69	C ₁₆ H ₁₂ N ₄ O ₅ S 372·35	51·61 51·82	3·25 3·37	15·05 ^b 15·25	
111	220	75	$C_{16}H_{12}N_4O_2$ 292·30	65·75 65·70	4∙14 4∙10	19·17 19·25	
1V	145—147	94	C ₁₈ H ₁₈ N ₄ O ₃ 338·36	63·90 63·78	5·36 5·23	16∙56 16∙51	

TABLE II Physical and analytical data of compounds II - IV

^a Calculated: 21.53% Br, found: 21.66% Br. ^b Calculated: 8.61% S, found: 8.68% S.

Collect. Czech. Chem. Commun. (Vol. 57) (1992)

2.5%) and ethanol (20 ml) at $0-5^{\circ}$ C during 15 min. The resulting red precipitate was filtered off and recrystallized from ethanol. Compound II precipitated after acidification with acetic acid. The ¹H NMR spectrum of IIa in CDCl₃ exhibited signals at δ 2.55 s, 3 H (CH₃); δ 7.25 to 7.65 m, 9 H (CH-Ar), and the disappearance of the signal at δ 14 due to NH. Results are summarized in Tables I and II.

Ethyl 2-[(4-phenylazo)phenylhydrazono]-3-oxobutanoate (*IV*)

A solution of 4-aminoazobenzene (0.025 mol) in acetic acid (10 ml) and hydrochloric acid (20 ml, 50% (v/v)) was diazotized at $0-5^{\circ}$ C by addition of sodium nitrite (0.025 mol) dissolved in water (10 ml). The resulting suspension was added with stirring to a cold solution of ethyl acetoacetate (0.025 mol) in aqeuous ethanol (40 ml, 50%) containing sodium acetate (10 g) during 15 min. The resulting solid was recrystallized from ethanol, giving orange red needles of m.p. 145–147°C. The ¹H NMR of *IV* in CDCl₃ showed signals at δ 1.25–1.40 t, 3 H (CH₃-ester); δ 2.50 s (CH₃--COCH₃), δ 4.15–4.40 q, 2 H (C₂H-ester); δ 7.30–7.90 m, 9 H (CH--Ar), and at δ 14.65 s, 1 H (NH).

6-Phenylazo-3-acetyl-1H-cinnolin-4-one (III)

A mixture of ethyl 2-[(4-phenylazo)phenylhydrazono]-3-oxobutanoate (IV) (0.01 mol), anhydrous aluminium chloride (0.02 mol) and chlorobenzene (30 ml) was refluxed on a water bath for 1 h. The resulting complex was cooled and decomposed by addition of concentrated hydrochloric acid (20 ml). The product was recrystallized from benzene, affording orange crystals of m.p. 220°C. The ¹H NMR spectrum of *III* in CDCl₃ exhibited signals at δ 2.65 s, 3 H (COCH₃); 7.45-8.05 m, 8 H (CH-Ar), and at δ 14.00 s, 1 H (NH).

REFERENCES

- 1. Macey P. E., Simpson J. C. E.: J. Chem. Soc. 1952, 2602.
- 2. McIntyre J., Simpson J. C. E.: J. Chem. Soc. 1952, 2606.
- 3. McIntyre J., Simpson J. C. E.: J. Chem. Soc. 1952, 2615.
- 4. Bevan K., Davies J., Hassall C., Morton R., Phillips D.: J. Chem. Soc., C 1971, 514.
- 5. Rahman Atta-Ur, Malik S., Cun-heng He, Clardy J.: Tetrahedron Lett. 26, 2759 (1985).
- 6. Suortti T., Von Wright A., Koskinen A.: Phytochemistry 22, 2873 (1983).
- 7. Youssef M. S. K., Kamal El-Dean A. M., Abbady M. S., Hassan K. M.: Collect. Czech. Chem. Commun. 56, 1768 (1991).
- 8. Saunders K. H., Allen R. L. M.: Aromatic Diazo Compounds, 3rd ed., p. 405. E. Arnold, Brisbane 1985.