Accepted Manuscript

Formal synthesis of tirandamycin B

Keisuke Takahashi, Rintaro Harada, Yurika Hoshino, Taichi Kusakabe, Susumi Hatakeyama, Keisuke Kato

PII: S0040-4020(17)30517-3

DOI: 10.1016/j.tet.2017.05.042

Reference: TET 28708

To appear in: Tetrahedron

Received Date: 14 April 2017

Revised Date: 8 May 2017

Accepted Date: 10 May 2017

Please cite this article as: Takahashi K, Harada R, Hoshino Y, Kusakabe T, Hatakeyama S, Kato K, Formal synthesis of tirandamycin B, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.05.042.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

1 Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions sould not be changed or altered

Formal Synthesis of Tirandamycin B	Leave this area blank for abstract info.
Keisuke Takahashi ^a *, Rintaro Harada ^a , Yurika Hoshino ^a , Taichi Kusakabe ^a , Susumi Hatakeyama ^b and Keisuke	
Kato ^a *	
^a School of Pharmaceutical Sciences Toho University, 2-2-1 Miyama, Funabashi ,Chiba 274-8510, Japan. ^b Medical Innovation Center, Nagasaki University,1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.	
$ \begin{array}{c} OTIPS \\ O \\ O \\ O \\ O \\ MSO, \\ H \\ $	

Tetrahedron journal homepage: www.elsevier.com

Formal Synthesis of Tirandamycin B

Keisuke Takahashi^a*, Rintaro Harada^a, Yurika Hoshino^a, Taichi Kusakabe^a, Susumi Hatakeyama^b and Keisuke Kato^a*

^aSchool of Pharmaceutical Sciences Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan. ^bMedical Innovation Center, Nagasaki University,1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

ARTICLE INFO

Received in revised form

ABSTRACT

A formal synthesis of tirandamycin B is described. The key intermediate is synthesised by Marshall allenyl zinc method, litiofuran coupling, and Achmatowicz reaction to construct the bicyclic core of tirandamycin B.

2009 Elsevier Ltd. All rights reserved.

Tetrahedror

- Available online Keywords:
- Natural product Tirandamycin B Filariasis

Article history:

Received

Accepted

1. Introduction

In 2011, Shen et al. reported the isolation of tirandamycins from Streptomyces species,¹ among which tirandamycin B (1) was shown to exhibit potent inhibition activity toward the tRNA synthetase of the parasite Brugia malayi. This parasite causes lymphatic filariasis, a serious neglected tropical disease (NTD) affecting over 200 million people. Low concentrations of tirandamycin B efficiently kill the adult worm, and thus this natural product holds promise as a lead scaffold for drugs to combat lymphatic filariasis. The biological activities and its molecular architecture (involving a bicyclic core, triene, and tetramic acid) make 1 an attractive synthetic target. The first total synthesis of racemic 1 was reported by DeShong in 1990^{2a} followed by Miyashita's formal synthesis of the antipode of **1** in 1996.^{2b} In 2016, Hatakeyama reported the enantioselective total synthesis of 1 in its natural form.^{2c} In this paper, we report a formal synthesis of 1 based on the addition of a chiral allenyl zinc species to aldehyde 8.

*Corresponding authors: K. Takahashi (keisuke.takahashi@phar.toho-u.ac.jp) and K. Kato (kkk@phar.toho-u.ac.jp) i

2. Results and discussion

Our synthetic strategy is shown in Scheme 1. Tirandamycin B (1) can be synthesized by coupling 2 and 3, developed previously.² Bicyclic compound 3 can be assembled by Achmatowicz reaction from furan derivative 4, which is synthesized by cross-metathesis ³ between 5 and 6. Intermediate 6, possessing four stereocenters, can be synthesized from 7, 8 and 9 using the Marshall method ^{4,5} and lithiofuran coupling. Marshall method is convenient for the construction of the two stereocenters at the same time.

Scheme 1. Synthetic plan

The synthesis of 14 is depicted in Scheme 2. Methyl (*S*)-3hydroxy-2-methylpropionate (10) was protected using 11 under acidic conditions to give PMB ether 12. Intermediate 12 was subjected to LAH reduction followed by Dess-Martin oxidation to give aldehyde 13. Significant racemization of aldehyde 13 was observed when prepared from 12 directly by using DIBALH. Following the procedure developed by Marshall et al.,^{4,5} 13 was coupled with optically active mesylate 9 prepared from commercially available 15 to give 14 possessing three continuous stereocenters in satisfactory yield and with satisfactory stereoselectivity.⁶

Scheme 2. Synthesis of 14

Partial hydrogenation of alkyne **14** was investigated as shown in Table 1. The initial attempt, using a typical poisoned catalyst gave **16** in moderate yield (entry 1) but the yield was not reproducible due to the reduction of alkene **16**. We next tried using the Pd-PEI (palladium-polyethyleneimine) catalyst developed by Sajiki et al. ⁷ Conditions using a 1:4 mixture of MeOH and dioxane as solvent did not give **16** (entry 2), whereas the reaction in MeOH proceeded efficiently to give **16** in satisfactory yield and with good reproducibility (entry3).

Scheme 3. Coupling between 7 and 19

Aldehyde **19** was synthesized from **16** via a three-step sequence (Scheme 3); protection of the secondary alcohol **16**, followed by removal of the PMB group, afforded **18**, which was treated with Dess-Martin reagent to afforded aldehyde **19** in 68% yield. Furan derivative **7** was prepared from **22** in 2 steps. Lithiofuran generated from **7** was coupled with aldehyde **19** to give **21** as the

major product with 3:1 diastereoselectivity. The ratio of stereoisomers was determined from the ¹H NMR spectra of the crude product. This stereoselective outcome of the reaction can be explained by the Felkin-Anh model for **20**. At this point, the required four continuous stereocenters of **1** were fixed. Formation of MTPA ester ⁸ of **21** or conversion to the corresponding acetonide ⁹ from **21** were difficult due to the instability of the derivatives, configuration of the coupling product **21** and its epimer were estimated based on the coupling constants of the protons attached to the generated stereocenters.¹⁰

Scheme 4. Attempted Cross-metathesis

We attempted to synthesize known intermediate **23** 2 by crossmetathesis reaction³ between obtained **21** and ethyl ester **5**. However, reactions employing Grubbs 1st, Grubbs 2nd, and Hoveyda-Grubbs 2nd catalysts did not give desired product **22** (Scheme 4). We attributed this disappointing result to the instability of the furan ring moiety in **21** and therefore decided to install the ethyl ester moiety after forming the bicyclic core of **1**.

Scheme 5. Formal Synthesis of Tirandamycin B

Based on a previously developed procedure,² 21 was subjected to Achmatowicz reaction using mCPBA to give 24 (Scheme 5). This result was gratifying because the terminal alkene of 21 was unaffected. Removal of the TES group from 24 using HF and H_2SiF_6 in acetonitrile promoted cyclization, forming the bicyclic core of 25. Cross metathesis between 25 and 5 was unsuccessful, as with 21, and thus we had to use an alternative method. Johnson-Lemieux oxidation ¹¹ of 25 giving aldehyde 26, and subsequent Wittig reaction using ylide 27, furnished intermediate 3. The synthetic route of 1 from 3 involving the coupling with 2 and epoxidation is reported in the literatures, ^{12,2} and thus we archived a formal synthesis of 1. Proton and carbon NMR spectra, and optical rotation data of synthesized 3, show good agreements with those reported in the literature.

3. Conclusions

We have developed a formal synthesis of tirandamycin B in 13 steps starting from methyl (S)-3-hydroxy-2-methylpropionate (10). This synthetic route involves the Marshall's method, Sajiki hydrogenation of terminal alkyne, lithiofuran coupling, and construction of the bicyclic core based on the Achmatowicz reaction.

4. Experimental

4.1 General

Where appropriate, reactions were performed in flame-dried glassware under argon atmosphere under room temperature. All extracts were dried over MgSO₄ and concentrated by rotary evaporation below 30 °C at 25 Torr unless otherwise noted. Commercial reagents and solvents were used as supplied. Column chromatography was performed using silica gel (particle size 100-210 μ m (regular), 40-50 μ m (flush)). Optical rotations were recorded on a digital polarimeter at ambient temperature. Infrared spectra were measured on a Fourier transform infrared spectrometer. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured using CDCl₃ as solvent, and chemical shifts are reported as δ values in ppm based on internal (CH₃)₄Si (0.00 ppm, ¹H) or solvent peak. HRMS spectra were taken in EI (dual focusing sector field) or FAB (dual focusing sector field) mode.

4.2 Experimental procedures

$4.2.1. Methyl(S) \hbox{-} 3 \hbox{-} ((4 \hbox{-} methoxybenzyl) oxy) \hbox{-} 2 \hbox{-}$

methylpropanoate (12).

To a stirred solution of **11** (3.4 g, 12.1 mmol) in Et₂O (51 mL) at 0 °C, were added **10** (1.0 g, 8.47 mmol) and TfOH (34 μ L, 0.33 mmol). After being stirred under room temperature for 16 h, saturated NaHCO₃ was added. The mixture was extracted with Et₂O, washed with brine, dried, concentrated and chromatographed (SiO₂ 50 g, hexane: AcOEt = 10:1) to give **12** (1.61 g, 6.8 mmol, 80%) as a colorless oil. [α]_D¹⁷+9.34 (*c* 1.13, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.45 (s, 2H), 3.79 (s, 3H), 3.68 (s, 3H), 3.62 (dd, *J* = 7.2, 8.8 Hz, 1H), 3.45 (dd, *J* = 6.0, 8.8 Hz, 1H), 2.81-2.72 (m, 1H), 1.16, (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 159.2, 130.1, 129.1, 113.6, 72.6, 71.5, 55.1,

1514, 1248, 1091 cm⁻¹; HRMS (EI) calcd for $C_{13}H_{18}O_4(M^+)$, 238.1205, found 238.1205.

4.2.2. (S)-3-((4-Methoxybenzyl)oxy)-2-methylpropanal (13).

To a suspension of LiAlH₄ (1.6 g, 42 mmol) in THF (160 mL) was added 12 (20 mL THF solution, 6.7 g, 28 mmol) dropwisely over 30 min at -78 °C. The mixture was gradually warmed up to room temperature, stirred for 13 h and then cooled to 0 °C. Water (1.5 mL), 15% NaOH (1.5 mL) and additional water (4.6 mL) were added to the mixture. The mixture was filtered through Celite, concentrated and chromatographed (SiO₂ 200 g, hexane: AcOEt = 2:1) to give the corresponding alcohol (4.8 g, 23 mmol, 82%) as a colorless oil. $[\alpha]_{D}^{23}$ +18.1 (c 1.00, CHCl₃), ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7Hz, 2H), 4.44 (s, 2H), 3.79 (s, 3H), 3.61-3.56 (m, 2H), 3.51 (ddd, J = 0.8, 4.8, 9.2 Hz, 1H), 3.39 (dd, J = 8.0, 9.2 Hz, 1H), 2.72 (s, 1H), 2.10-1.99 (m, 1H), 0.87 (d, J = 7.1 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 159.2, 130.0, 129.2, 113.7, 75.0, 72.5, 67.7, 55.2, 35.5, 13.4.; FT-IR (KBr) 3434, 2955, 2867, 1514, 1249, 1176, 1035 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₈O₃ (M⁺), 210.1256, found 210.1256. To a stirred solution of the alcohol above obtained (449 mg, 2.13 mmol) in CH₂Cl₂ (7 mL) at 0 °C was added DMPI (1.27 g, 3.00 mmol). After being stirred under the room temperature for 1 h, saturated Na₂S₂O₃ (20 mL) was added to the mixture at 0 °C. The mixture was extracted with Et₂O, washed with saturated NaHCO3 and brine, dried, concentrated and chromatographed (SiO₂ 10 g, hexane:AcOEt = 4:1) to give **13** (418 mg, 2.01 mmol, 94%) as a colorless oil. $[\alpha]_{D}^{21}$ +30.5 (*c* 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, J = 1.6 Hz, 1H), 7.23 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.45 (s, 2H), 3.80 (s, 3H), 3.67-3.58 (m, 2H), 2.68-2.60 (m, 1H), 1.11, (d, J = 7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 203.9, 159.2, 129.9, 129.2, 113.7, 72.9, 69.7, 55.2, 46.7, 10.6; FT-IR (KBr) 2936, 2861, 1724, 1514, 1248, 1094, 1034 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₆O₃(M⁺) 208.1099, found 208.1100.

4.2.3. (S)-But-3-yn-2-yl methanesulfonate (9).

To a stirred solution of 15 (2.0 g, 28.5 mmol) in CH₂Cl₂ (50 mL) were added Et₃N (6.0 mL, 42. 8 mmol), MsCl (2.6 mL, 34. 2 mmol) and DMAP (206 mg, 1.43 mmol) under the room temperature. After being stirred for 3 h, water (50 mL) was added at 0 °C. The mixture was extracted with Et₂O, washed with saturated NaHCO3 and brine, dried, concentrated and chromatographed (SiO₂ 58 g, hexane: $Et_2O = 3:2$) to give 9 (4.0 g, 27.2 mmol, 95%) as a colorless oil. $[\alpha]_{D}^{17}$ -119.7 (c 1.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.29 (ddd, J = 2.0, 6.8, 13.2 Hz, 1H), 3.13 (s, 3H), 2.72 (d, J = 2.0 Hz, 1H), 1.66 (d, J = 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 80.1, 76.3, 67.4, 39.1, 22.4; FT-IR (KBr) 3283, 3029, 2998, 2942, 2125, 1358, 1177, 1123, 1090, 1017 cm⁻¹; HRMS (EI) calcd for C₅H₇O₃S [(M-H)⁺] 147.0116, found 147.0116.

4.2.4. (2S,3R,4R)-1-((4-Methoxybenzyl)oxy)-2,4-dimethylhex-5yn-3-ol (14).

Pd(OAc)₂ (163 mg, 0.73 mmol) and PPh₃ (204 mg, 0.78 mmol) were dissolved in THF (25 mL) and cooled to -78 °C. 13 (1.45 g, 7.0 mmol) and 9 (2.0 g, 14.0 mmol) were added via cannula. After 10 minutes, Et₂Zn (1 M in THF, 14 mL, 14 mmol) was added at the same temperature. The resulting mixture was stirred for 15 h at -20 °C . 1 N HCl was added to the mixture. The mixture was extracted with Et₂O, washed with NaHCO₃, and brine, dried, concentrated and chromatographed (SiO₂ 100 g, hexane:AcOEt = 10:1) to give **14** (1.39 g, 5.3 mmol, 76%) as a colorless oil. $[\alpha]_D^{16}$ +9.8 (c 0.90, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.45

51.6, 40.1, 13.9; FT-IR (KBr) 2950, 2862, 1738, 1613, M (s, 2H), 3.80 (s, 3H), 3.60-3.48 (m, 3H), 3.36-3.32 (m, 1H), 2.71-2.64 (m, 1H), 2.17-2.06 (m, 1H), 2.09 (d, J = 2.4 Hz, 1H), 1.29 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 129.8, 129.3, 113.7, 85.0, 78.2, 74.7, 73.0, 70.2, 55.2, 37.2, 30.1, 17.8, 13.8; FT-IR (KBr) 3464, 3292, 2967, 2934, 2872, 1513, 1247, 1080 cm⁻¹; HRMS (EI) calcd for C₁₆H₂₂O₃ (M⁺) 262.1569, found 262.1569.

4.2.5. (2S,3R,4R)-1-((4-Methoxybenzyl)oxy)-2,4-dimethylhex-5en-3-ol (16).

Under argon atmosphere, 5% Pd-PEI (13 mg) was added to a solution of 15 (131 mg, 0.50 mmol) in MeOH (2 mL) and then a hydrogen gas balloon was attached. The mixture was stirred for 7 h, diluted with Et₂O, washed with water, brine, dried, concentrated, and chromatographed (SiO₂ 8 g, hexane:AcOEt = 25:1) to give 16 (94 mg, 0.36 mmol, 71%) as a colorless oil. $[\alpha]_{D}^{17}$ +11.2 (*c* 1.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.94-5.85 (m, 1H), 5.07 (d, J = 0.7 Hz, 1H), 5.04-5.02 (m, 1H), 4.44 (s, 2H), 3.79 (s, 3H), 3.55 (dd, J = 9.2, 4.4 Hz, 1H), 3.49-3.45 (m, 2H), 3.37-3.33 (m, 1H), 2.38-2.30 (m, 1H), 1.96-1.86 (m, 1H), 1.09, (d, J = 7.1Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 159.2, 139.7, 129.8, 129.3, 115.1, 113.4, 79.2, 75.1, 73.1, 55.2, 41.0, 36.1, 17.7, 13.9; FT-IR (KBr) 3493, 2963, 2932, 1248, 1084, 1036, cm⁻¹; HRMS (EI) calcd for $C_{16}H_{24}O_3$ (M⁺) 264.1725, found 264.1726.

4.2.6. Triethyl(((2S,3R,4R)-1-((4-methoxybenzyl)oxy)-2,4dimethylhex-5-en-3-yl)oxy)silane (17).

To a solution of 16 (1.21 g, 4.59 mmol) in CH₂Cl₂ (36 mL), were added Et₃N (1.28 mL, 9.19 mmol), TESCl (1.15 mL, 6.89 mmol) and DMAP (55 mg, 0.45 mmol) at 0 °C. After being stirred for 19 h under room temperature, The mixture was diluted with AcOEt, washed with 1 M HCl, saturated NaHCO₃ and brine, dried, concentrated and chromatographed (SiO₂ 89 g, hexane:AcOEt = 50:1) to give 17 (1.58 g, 4.2 mmol, 91%) as a colorless oil. $[\alpha]_{D}^{17}$ -14.9 (c 0.82, CHCl₃), ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.86 (ddd, J = 8.0, 10.6, 18.8 Hz, 1H), 5.00-4.97 (m, 1H), 4.95 (d, J = 0.7, 1H), 4.44 (d, J = 11.7 Hz, 1H), 4.38 (d, J = 11.7 Hz, 1H), 3.80 (s, 3H), 3.53-3.48 (m, 2H), 3.30 (dd, J = 7.3, 8.9 Hz, 1H), 2.39-2.31 (m, 1H), 1.94-1.84 (m, 1H), 1.02 (d, J = 6.9 Hz, 3H), 0.96-0.94 (m, 12H), 0.59 (q, J = 8.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 141.1, 131.0, 129.1, 114.1, 113.6, 78.4, 72.7, 72.5, 55.2, 41.7, 37.9, 18.1, 14.9, 7.1, 5.4; FT-IR (KBr) 2957, 2877, 1513, 1246, 1090, 1041 cm⁻¹; HRMS (EI) calcd for C₂₂H₃₈O₃Si (M⁺) 378.2590, found 378.2590.

4.2.7. (2S,3R,4R)-2,4-Dimethyl-3-((triethylsilyl)oxy)hex-5-en-1ol (18).

To a solution of 17 (1.48 g, 3.9 mmol) in CH₂Cl₂ (64 mL) were added phosphate buffer (pH 7, 0.4 M, 16 mL) and DDQ (2.5 g, 11.0 mmol) at 0 °C. After being stirred for 15 minutes under room temperature, the mixture was diluted with Et₂O, washed with 2 M NaOH and brine, dried, concentrated and chromatographed (SiO₂ 55 g, hexane: AcOEt = 15:1) to give 18(825 mg, 3.2 mmol, 82%) as a colorless oil. $[\alpha]_{D}^{20}$ -8.36 (c 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.83 (ddd, *J* = 7.7, 10.4, 17.2 Hz, 1H), 5.06 (t, J = 1.4 Hz, 1H), 5.03-5.00 (m, 1H), 3.68-3.61 (m, 1H), 3.61-3.57 (m, 2H), 2.69 (t, J = 5.8 Hz, 1H), 2.43-2.41 (m, 1H), 1.87-1.78 (m, 1H), 1.04, (d, J = 6.4 Hz, 3H), 0.97 (t, J = 8.0 Hz, 9H), 0.96 (d, J = 6.4 Hz, 3H), 0.65, (q, J = 8.0Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 115.3, 82.1, 66.7, 43.7, 38.1, 16.9, 16.4, 7.6, 5.9; FT-IR (KBr) 3396, 2958, 2878, 1459, 1239, 1037, 1007 cm⁻¹; HRMS (EI) calcd for $C_{12}H_{25}O_2$ Si [(M-Et)⁺] 229.1624, found 229.1624.

4.2.8. (2R,3R,4R)-2,4-Dimethyl-3-((triethylsilyl)oxy)hex-5-enal (19).

To a stirred solution of 18 (387 mg, 1.50 mmol) in CH₂Cl₂ (6 mL), was added DMPI (1.0 g, 2.4 mmol) at 0 °C. After being stirred for 2 h under room temperature, saturated Na₂S₂O₃ was added at 0 °C and stirred for 30 minutes. The mixture was extracted with Et₂O, washed with NaHCO₃ and brine, dried, concentrated and chromatographed (SiO₂ 35 g, hexane:AcOEt = 50:1) to give 19 (348 mg, 1.36 mmol, 91%) as a colorless oil. $[\alpha]_{D}^{20}$ -53.8 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.78 (d, J = 2.4 Hz, 1H), 5.88-5.79 (m, 1H), 5.08-5.07 (m, 1H), 5.05-5.03 (m, 1H), 3.82 (dd, J = 4.0, 5.2 Hz, 1H), 2.57-2.50 (m, 1H), 2.44-2.38 (m, 1H), 1.06, (d, J = 6.8 Hz, 3H), 1.05 (d, J =6.8 Hz, 3H), 0.96 (t, J = 8.0 Hz, 9H), 0.62, (q, J = 8.0 Hz, 6H); ¹³C NMR (100MHz, CDCl₃) δ 205.3, 139.9, 115.4, 78.1, 50.0, 42.9, 16.3, 11.9, 6.9, 5.2; FT-IR (KBr) 2959, 2879, 1726, 1460, 1240, 1120, 1075 cm⁻¹; HRMS (EI) calcd for C₁₂H₂₃O₂ Si [(M-Et)⁺] 227.1467, found 227.1467.

4.2.9 Triisopropyl((2-methylfuran-3-yl)methoxy)silane (7).

To a suspension of LiAlH₄ (2.4 g, 64 mmol) in THF (140 mL) was added 22 (10 mL THF solution, 5.0 g, 32 mmol) dropwisely over 30 min at -78 °C. The mixture was gradually warmed up to room temperature, stirred for 2.5 h and then cooled to 0 °C. Water (2.0 mL), 15% NaOH (2.5 mL) and additional water (6.5 mL) were added to the mixture. The mixture was filtered through Celite and concentrated. The resulting crude alcohol was dissolved in CH₂Cl₂ (37 mL). Imidazole (3.6 g, 32 mmol) and TIPSCI (10. 1 mL, 48 mmol) were added. The mixture was stirred under room temperature for 15 h, diluted with Et₂O, washed with 1 M HCl, saturated NaHCO₃ and brine, dried, concentrated and chromatographed (SiO₂ 160 g, hexane: AcOEt = 80:1) to give 7 (5.8 g, 22 mmol, 69%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 1.8 Hz, 1H), 6.35 (d, J =1.6 Hz, 1H), 4.58 (s, 2H), 2.26 (s, 3H), 1.18-1.05 (m, 21H); ¹³C NMR (100MHz, CDCl₃) δ 147.7, 140.0, 119.3, 110.9, 57.5, 18.0, 12.0, 11.8; FT-IR (KBr) 2943, 2867, 1465, 1085, 1066 cm⁻¹; HRMS (EI) calcd for $C_{15}H_{28}O_2Si$ (M)⁺ 268.1859, found 268.1857.

4.2.10. (1S,2S,3R,4R)-2,4-Dimethyl-1-(5-methyl-4-(((triisopropylsilyl)oxy)methyl)furan-2-yl)-3-((triethylsilyl)oxy)hex-5-en-1-ol (**21**).

To a stirred solution of 7 (318 mg, 1.17 mmol) in THF (1 mL) was added sec-BuLi (0.7 M in hexane, 1.1 mL, 0.77 mmol) at -78 °C. After being stirred for 40 minutes, 19 (150 mg, 0.59 mmol) was added and stirred for 1 h under the same temperature. The reaction was quenched with water, and the mixture was extracted with Et₂O. The organic phase was washed with brine, concentrated and chromatographed (SiO₂ 14 g, dried hexane: AcOEt = 50:1) to give 21 (173 mg, 0.33 mmol, 56%) and its epimer (56 mg, 0.11 mmol, 18%) as a colorless oil. Data for 21; $[\alpha]_D^{14}$ -6.6 (c 1.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.16 (s, 1H), 5.90 (ddd, J = 7.2, 10.4, 17.2 Hz, 1H), 5.11-4.99 (m, 3H), 4.54 (s, 2H), 3.65 (t, J = 4.6 Hz, 1H), 3.14 (d, J = 2.8Hz, 1H), 2.52-2.47 (m, 1H), 2.23 (s, 3H), 2.07-2.04 (m, 1H), 1.16-0.95 (m, 27H), 0.98 (t, J = 8.0 Hz, 9H), 0.67 (q, J = 8.0 Hz, 6H); ^{13}C NMR (100 MHz, CDCl₃) δ 153.6, 146.5, 141.2, 119.7, 114.9, 107.0, 80.8, 68.4, 57.6, 42.5, 39.3, 18.0, 17.1, 12.7, 11.9, 11.8, 7.07, 5.4; FT-IR (neat) 3493, 2954, 2870, 1462, 1132, 1060, 1004 cm⁻¹; HRMS (EI) calcd for $C_{29}H_{56}O_4Si_2$ (M⁺) 524.3717, found 524.3717. *Data for the epimer of* **21**; $[\alpha]_D^{15}$ +10.5 (*c* 0.89, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.19 (s, 1H), 5.87 (ddd, J = 7.2, 10.0, 17.6 Hz, 1H), 5.06-5.00 (m, 2H), 4.54 (s, 2H), 4.52 (dd, J = 2.4, 8.8 Hz, 1H), 3.70 (dd, J = 4.0, 6.0

A12, 113, 5.00 (d, J = 2.4 112, 111), 2.52-2.44 (iii, 111), 2.24 (s, 3H), 2.23-2.18 (m, 1H), 1.15-0.98 (m, 33H), 0.73-0.61 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 147.0, 140.8, 119.7, 114.5, 108.6, 81.0, 71.3, 57.5, 43.2, 40.9, 18.0, 16.1, 15.4, 12.0, 11.9, 6.9, 5.2; FT-IR (KBr) 3451, 2955, 2870, 1462, 1240, 1063, 1008 cm⁻¹; HRMS (EI) calcd for C₂₉H₅₆O₄Si₂ (M⁺) 524.3717, found 524.3719.

4.2.11. (2S)-6-Hydroxy-6-methyl-2-((2S,3R,4R)-4-methyl-3-((triethylsilyl)oxy)hex-5-en-2-yl)-5-

(((triisopropylsilyl)oxy)methyl)-2H-pyran-3(6H)-one (24).

To a stirred solution of 21 (104 mg, 0.20 mmol) in CH₂Cl₂ was added mCPBA (48 mg, 0.28 mmol) at 0 °C. After being stirred for 4 h at the same temperature, the mixture was diluted with AcOEt, washed with saturated Na₂S₂O₃, saturated NaHCO₃, and brine, dried, concentrated and chromatographed (SiO₂ 8 g, hexane:AcOEt = 50:1) to give 24 (100 mg, 0.19 mmol, 95%) as a colorless solid. $[\alpha]_{D}^{15}$ -10.7 (c 0.98, CHCl₃); mp 73-76 °C;¹H NMR (400 MHz, CDCl₃) δ 6.25 (t, J = 1.6 Hz, 1H), 5.97-5.88 (m, 1H), 5.02 (d, J = 2.4 Hz, 1H), 5.00 (s, 1H), 4.70 (d, J = 2.0Hz, 1H), 4.49 (t, J = 2.0 Hz, 2H), 3.69 (dd, J = 2.0, 10.4 Hz, 1H), 2.84 (s, 1H), 2.46-2.40 (m, 1H), 2.34 (s, 1H), 1.56 (s, 3H), 1.20-0.96 (m, 33H), 0.75-0.60 (m, 9H); ¹³C NMR (100MHz, CDCl₃) δ 198.3, 160.8, 140.0, 121.5, 114.4, 93.4, 76.5, 75.1, 61.5, 41.2, 38.7, 26.5, 17.9, 17.7, 11.8, 7.1, 5.5; FT-IR (KBr) 3410, 2948, 2871, 1669, 1463, 1118, 1054, 1011 cm⁻¹; HRMS (FAB) calcd for $C_{29}H_{56}O_5Si_2Na$ [(M+Na)⁺] 563.3564, found 563.3563.

4.2.12. (1S,3R,4R,5S)-3-((R)-But-3-en-2-yl)-1,4-dimethyl-8-

(((triisopropylsilyl)oxy)methyl)-2,9-dioxabicyclo[3.3.1]non-7-en-6-one (25).

To a stirred solution of 24 (141 mg, 0.26 mmol) in MeCN (40 mL) were added 48% HF (13 μ L) and 25% H₂SiF₆ (14 μ L) under room temperature. After being stirred for 2 minutes, saturated NaHCO₃ was added. The mixture was diluted with Et₂O, washed with water and brine, dried, concentrated and chromatographed $(SiO_2 \ 15 \ g, hexane : AcOEt = 40:1)$ to give 25 (68 mg, 0.17 mmol, 65%) as a colorless solid. $[\alpha]_D^{19}$ -163.9 (c 1.28, CHCl₃); mp 54-56 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.52 (t, J = 2.0 Hz, 1H), 5.86 (ddd, J = 9.2, 10.4, 19.4 Hz, 1H), 5.08-5.05 (m, 1H), 5.05-5.00 (m, 1H), 4.50 (dd, J = 2.4, 17.6 Hz, 1H), 4.22 (dd, J =2.4, 18.0 Hz, 1H), 4.05 (d, J = 6.0 Hz, 1H), 3.40 (dd, J = 2.4, 11.2 Hz, 1H), 2.43-2.35 (m, 1H), 2.20-2.10 (m, 1H), 1.45 (s, 3H), 1.18-1.06 (m, 21H), 1.03 (d, J = 6.8 Hz, 3H), 0.73 (d, J = 7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 195.7, 158.2, 138.7, 123.2, 115.7, 94.6, 79.1, 60.8, 39.3, 33.0, 24.1, 18.0, 18.0, 17.5, 11.9, 11.3; FT-IR (KBr) 2954, 2867, 1679, 1460, 1141, 1061 cm⁻¹ HRMS (FAB) calcd for $C_{23}H_{41}O_4Si$ [(M+H)⁺] 409.2274, found 409.2275.

4.2.13. (S)-2-((1S,3S,4R,5S)-1,4-dimethyl-6-oxo-8-

(((triisopropylsilyl)oxy)methyl)-2,9-dioxabicyclo[3.3.1]non-7-en-3-yl)propanal (26).

To a stirred solution of **25** (32.7 mg, 0.08 mmol) in THF (0.4 mL) were added OsO₄ (0.1M in H₂O, 100 µL, 0.01 mmol) and NaIO₄ (42 mg, 0,20 mmol) at room temperature. After being stirred for 2 h, saturated Na₂S₂O₃ was added. The mixture was extracted with AcOEt, washed with brine, dried, concentrated and chromatographed (SiO₂ 4 g, hexane : AcOEt = 15:1) to give **26** (14 mg, 0.034 mmol, 43%) as a colorless oil. $[\alpha]_D^{17}$ -142.1 (*c* 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.79 (d, *J* = 2.4 Hz, 1H), 6.56 (dd, *J* = 1.6. 2.0 Hz, 1H), 4.51 (dd, *J* = 2.4, 18.4 Hz, 1H), 4.23 (dd, *J* = 2.0, 18.4 Hz, 1H), 4.11 (d, *J* = 5.6 Hz, 1H), 3.73 (dd, *J* = 2.0, 11.6 Hz, 1H), 2.58-2.51 (m, 1H), 2.41-2.31 (m, 1H), 1.46 (s, 3H), 1.25-1.06 (m, 24H), 0.82 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 203.4, 194.7, 157.6, 123.7, 94.9,

78.8, 76.2, 60.8, 47.0, 33.3, 24.0, 17.99, 17.96, 11.9, 11.7, 11.2; MANUS FT-IR (KBr) 2943, 2874, 1727, 1687, 1466, 1376, 1225, 1139, 1058 cm⁻¹. HRMS (FAB) calcd for $C_{22}H_{39}O_5Si$ [(M+H)⁺] 411.2567, found 411.2560.

4.2.14. Intermediate 3.

To a stirred solution of 26 (14 mg, 0.034 mmol) in benzene (0.5 mL) was added ylide 27 (24 mg, 0.066 mmol). The mixture was refluxed for 6 h, evaporated, chromatographed (SiO₂ 4 g, hexane : AcOEt = 20:1) to give 3 (12 mg, 0.024 mmol, 71%) as a colorless oil. $[\alpha]_D^{19}$ -105.5 (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.88 (dd, J = 1.2, 10.0 Hz, 1H), 6.51 (t, J = 1.6 Hz, 1H), 4.45 (dd, J = 2.4, 17.2 Hz, 1H), 4.23-4.17 (m, 3H), 4.03 (d, J = 6.0 Hz, 1H), 3.46 (dd, J = 2.0, 11.2 Hz, 1H), 2.81-2.73 (m, 1H), 2.04-1.94 (m, 1H), 1.83 (d, J = 1.6 Hz, 3H), 1.47 (s, 3H), 1.30 (t, *J* = 6.8 Hz, 3H), 1.19-1.05 (m, 21H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.71 (d, J = 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 195.4, 168.0, 158.2, 141.3, 128.4, 123.3, 94.7, 78.9, 60.8, 60.6, 34.0, 33.5, 24.1, 18.01, 17.97, 16.4, 14.3, 12.5, 11.9, 11.7; FT-IR (KBr) 2941, 2867, 1709, 1459, 1383, 1298, 1250, 1132 cm⁻¹. HRMS (FAB) calcd for $C_{27}H_{47}O_6Si [(M+H)^+]$ 495.3142, found 495.3099.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number (JP 25460017), The Tokyo Biochemical Research Foundation (TBRF) and Meiji Seika Pharma Award in Synthetic Organic Chemistry, Japan.

References and notes

(a) Yu Z, Vodanovic-Jankovic SN, Ledeboer N, 1. Huang S-X, Rajski SR, Kron M, Shen B. Org Lett. 2011;13:2034.

- (b) Hagenmaier H, Jaschke KH, Santo L, Scheer M, Zähner H. Arch Microbiol. 1976;109:65. 2. (a) Shimshock SJ, Waltermire RE, DeShong P. J Am Chem Soc. 1991;113:8791. (b) Shiratani T, Kimura K, Yoshihara K, Hatakeyama S, Irie H, Miyashita M. Chem Commun. 1996;21. (c) Yoshimura, H. Takahashi K, Ishihara J, Hatakeyama S. Chem Commun. 2015;51:17004. 3. For a review, see; Connon SJ, Blechert S. Angew
- Chem Int Ed. 2003;42:1900.
- For a review see; Marshall JA. J Org Chem. 4. 2007;72:8153.
- 5.
- Marshall JA, Adams ND. *J Org Chem.* 2002;67:733. Stereoselective outcome of the reaction was determined from ¹H NMR spectra of *ent*-14 synthesized by the similar methodology.
- 7. Sajiki H, Mori S, Ohkubo T, Ikawa T, Kume A, Maegawa T, Monguchi Y. Chem Eur J. 2008;14:5109. Pd-PEI was purchased from Wako Pure Chemical Industries.
- Hoye TR, Jeffrey CS, Shao F. Nat Protoc, 2007;2:2451.
- Rychnovsky SD, Rogers BN, Richardson TI. Acc 9. Chem Res. 1998;31:9.
- 10. Bouzide A. Org Lett. 2002;4:1347.
- 11. Pappo R, Allen Jr. DS, Lemieux RU, Johnson WS. J Org Chem. 1956;21:478.
- 12. In addition to 1, tirandamycins A, C, D, and tirandalydigin were also synthesised from 3 by Hatakeyama et al.2c

Supplementary Material

¹H and ¹³C NMR spectra of synthesized compounds.