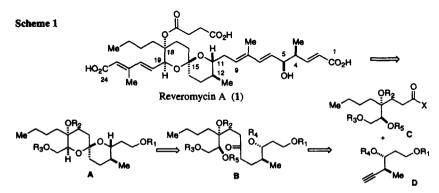


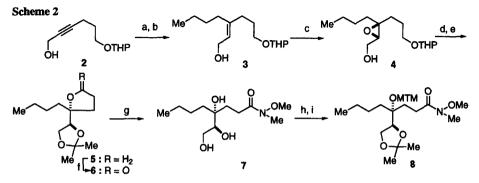
PII: S0040-4039(96)01460-8


Synthetic Studies on Reveromycin A: Stereoselective Synthesis of the Spiroketal System

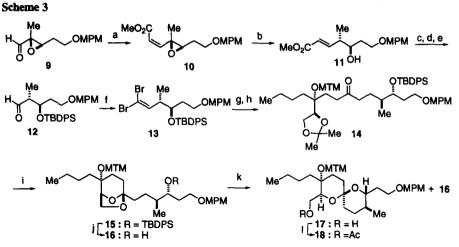
Takeshi Shimizu,* Ryoichi Kobayashi, Katsuhisa Osako, Hiroyuki Osada, and Tadashi Nakata*

The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan

Abstract: The 6,6-spiroketal system of reveromycin A (1), corresponding to the C₉-C₂₀ part, was stereoselectively synthesized and the absolute configuration at C₁₁, C₁₂, C₁₅, C₁₈ and C₁₉ of 1 was confirmed by the synthesis of the 5,6-spiroketal derivative degradated from 1. Copyright © 1996 Elsevier Science Ltd

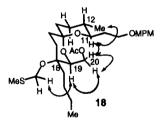

Reveromycin A (1) is a novel polyketide-type antibiotic produced by *Streptomyces sp.* and inhibits mitogenic activity induced by the epidermal growth factor in a mouse epidermal keratinocyte.¹ The characteristic structural features of 1 include a 1,7-dioxaspiro[5.5]undecane moiety, that is, the 6,6-spiroketal system comprising a hemisuccinate, two alkenyl carboxylic acids, and methyl and *n*-butyl groups.² Recently, the absolute configuration of 1 was determined on the basis of chemical degradation and spectroscopic evidence.³ In this paper, we report the stereoselective synthesis of the 6,6-spiroketal system $\cdot A$ (=17) in 1, the key synthetic intermediate corresponding to the C₉-C₂₀ part, and the elucidation of the absolute configuration at C₁₁, C₁₂, C₁₅, C₁₈ and C₁₉ through the synthesis.

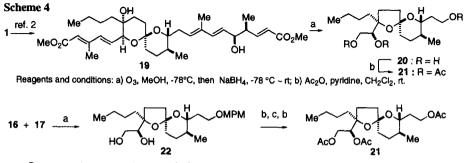
Our synthetic strategy for the 6,6-spiroketal system A, having the requisite functional groups for the synthesis of 1, involves the coupling of two segments, C and D, followed by ring closure of ketone B to the 6,6-spiroketal.


Propargyl alcohol 2, prepared from 4-pentyn-1-ol,⁴ was chosen as the starting material for the synthesis

of segment C. The successive treatment of 2 with LAH-NaOMe and I₂ furnished the iodide, which was alkylated by treatment with *n*-Bu₂CuLi and then *n*-BuI⁵ to give allyl alcohol 3 (88%). The Sharpless asymmetric epoxidation⁶ of 3 with *t*-BuOOH in the presence of (+)-DET and Ti(O*i*-Pr)₄ afforded the β -epoxide 4 (92%). Hydrolysis of the THP group in 4 with AcOH effected simultaneous cyclization to give the tetrahydrofuran derivative (92% ee based on the ¹H-NMR spectra of the corresponding MTPA ester), whose hydroxyl groups were protected as the acetonide to afford 5 (69% from 4). The oxidation of 5 with RuCl₃-NaIO₄⁷ selectively gave γ -butyrolactone 6 (92%). The direct introduction of several alkyl groups to the lactone 6 gave unsatisfactory results. We therefore investigated the route via *N*-methoxy-*N*-methyl amide for the effective addition of segment D.^{8a,b} Treatment of 6 with (MeO)MeNH-HCl-Me₃Al, however, resulted in low yield of the desired *N*-methoxy-*N*-methyl amide 7. After several attempts, we found that (MeO)MeNH-HCl-Me₂AlCl exclusively underwent ring opening to give 7.⁹ The hydroxyl groups in 7 were protected as the acetonide and MTM ether by successive treatment with Me₂C(OMe)₂ and DMSO-Ac₂O to give the fully protected amide 8 (57% from 6) corresponding to segment C.

Reagents and conditions: a) LAH, NaOMe, THF, reflux, then I₂, -78 °C ~ rt; b) *n*-Bu₂CuLi, El₂O, -30 °C, then *n*-Bul, -30 °C ~ rt (88% from 2); c) *t*-BuOOH, (+)-DET, Ti(*Ot*-Pr)4, 4A-MS, CH₂Cl₂, -23 °C (92%); d) AcOH, THF, H₂O, rt; e) Me₂C(OMe)₂, *p*-TsOH, CH₂Cl₂, rt (69% from 4); f) RuCl₃, NaIO4, CH₃CN, CCl₄, H₂O, rt (92%); g) (MeO)MeNHHCl, Me₅AlCl, CH₂Cl₂, rt; h) Me₂C(OMe)₂, PPTS, CH₂Cl₂, rt; l) DMSO, Ac₂O, rt (57% from 6).


The construction of segment **D** and subsequent coupling with **C** were then carried out. The epoxy aldehyde 9^{10} was converted into the (Z)-olefinic ester 10 with (CF₃CH₂O)₂P(O)CH₂CO₂Me 18-crown-6 and KN(TMS)₂¹¹ (73%). The palladium-catalyzed hydrogenolysis of the (Z)-alkenyloxirane 10 was performed with Pd₂(dpa)₃-CHCl₃ in the presence of *n*-Bu₃P-HCO₂H-Et₃N¹² to stereoselectively afford the *anti*-alcohol 11 (84%). After protection of the hydroxyl group as the TBDPS ether (100%), the olefin was oxidatively cleaved by successive treatment with OsO₄-NMO and Pb(OAc)₄ to afford the aldehyde 12 (84%), which was then treated with CBr₄-Ph₃P to give the dibromoolefin 13 (94%) corresponding to segment **D**. Treatment of 13 with 2 equiv of *n*-BuLi followed by the addition of 8 afforded the coupling product¹³ which was hydrogenated on Pd/C to give the saturated ketone 14 (80%). Selective cleavage of the acetonide in 14 was performed with PPTS in MeOH to give the bicyclic ketal 15 (34%) along with the recovered 14 (22%). The TBDPS group in 15 was deprotected with *n*-Bu₄NF to give the alcohol 16 (80%). The bicyclic ketal 16 was easily converted into a 1:1 equilibrium mixture of 6,6-spiroketal 17 and 16 upon standing in CDCl₃ at rt. The stereostructure of 17, corresponding to **A**, was confirmed by the NMR analysis (¹H NMR and NOE) of the corresponding acetate 18¹⁴, which proved to have the same conformation as that of reveromycin A (1) as shown in Fig. 1.


Reagents and conditions: a) $(CF_3CH_2O)_2P(O)CH_2CO_2Me$, 18-Crown-6, KN(TMS)₂, THF, -78 °C (73%); b) $Pd_2(dba)_3$ °CHCl₃, *n*-Bu₃P, HCO₂H-Et₃N, dioxane, rt (84%); c) TBDPSCI, imidazole, DMF, rt (100%); d) OsO₄, NMO, HBuOH, acetone, H₂O, rt (97%); e) Pb(OAc)₄, toluene, rt (87%); f) CBr₄, Ph₃P, CH₂Cl₂, 0 °C (94%); g) *n*-BuLi, THF, -78 °C ~ rt, then **3**, 0 °C ~ rt (82%); h) H₂, Pd/C, AcOEt, rt (97%); i) PPTS, MeOH, rt (34% for **15** and 22% for **14**); j) *n*-Bu₄NF, THF, rt (80%); k) CDCl₃, rt (100%, **16**:**17** =1:1); l) Ac₂O, pyridine, DMAP, CH₂Cl₂, rt (99%).

Here, the absolute configuration of the spiroketal system of 1 was reconfirmed through the following synthesis (Scheme 4).³ The ozonolysis of the desuccinated ester 19,² prepared from 1, followed by NaBH₄ reduction produced the 5,6-spiroketal 20, which was then acetylated to give the triacetate 21,¹⁵ $[\alpha]_D$ +44.3 (c 0.18, CHCl₃). The authentic triacetate 21 was also synthesized from a mixture of 16 and 17. Treatment of the mixture with *p*-TsOH exclusively gave the 5,6-spiroketal 22 (90%) which was converted into the triacetate 21,¹⁵ $[\alpha]_D$ +39.1 (c 0.13, CHCl₃), by acetylation, deprotection of the

Fig. 1 NOE Data of Acetate 18

MPM group, and acetylation. The spectral data and optical rotation of 21 prepared from natural 1 were identical with those of the synthetic 21. Thus, the absolute configuration of the 6,6-spiroketal system in 1 was unequivocally reconfirmed through the synthesis as shown in the structure 1, that is, 11R, 12S, 15S, 18R and 19S configuration.

Reagents and conditions: a) *p*-TsOH, CHCl₃, rt (90%); b) Ac₂O, pyridine, DMAP, CH₂Cl₂, rt; c) DDQ, CH₂Cl₂, H₂O, 5 °C ~ rt; b) Ac₂O, pyridine, CH₂Cl₂, rt (86% from **22**).

In conclusion, we have accomplished the stereoselective synthesis of the 6,6-spiroketal system 17 in reveromycin A (1), corresponding to the C₉-C₂₀ part, and confirmed its absolute configuration through the synthesis of the spiroketal 21. The total synthesis of reveromycin A is now in progress.¹⁶

ACKNOWLEDGEMENT: We thank Dr. H. Koshino and Ms. T. Chijimatsu for the NMR measurements, Ms. K. Harata for the mass spectral measurements, and Prof. M. Ubukata (Toyama Prefectural University) for variable discussions.

REFERENCES AND NOTES

- 1. Takahashi, H.; Osada, H.; Koshino, H.; Kudo, T.; Amano, S.; Shimizu, S.; Yoshihama, S.; Isono, K. J. Antibiotics 1992, 45, 1409-1413.
- 2. Koshino, H.; Takahashi, H.; Osada, H.; Isono, K. J. Antibiotics 1992, 45, 1420-1427.
- 3. Ubukata, M.; Koshino, H.; Osada, H.; Isono, K. J. Chem. Soc., Chem. Commun. 1994, 1877-1878.
- 4. The propargyl alcohol 2 was obtained from 4-pentyn-1-ol in two steps: a) DHP, p-TsOH, Et₂O, rt (99%); b) n-BuLi, (HCHO)_n, THF, rt (90%).
- 5. Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1968, 90, 5615-5616.
- 6. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5976-5978.
- 7. Carlsen, Per H. J.; Katsuki, T.; Martin, V.S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.
- (a) Basha, A.; Lipton, M.; Weinreb, S.M. Tetrahedron Lett. 1977, 4171-4174. (b) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3818-3821.
- (MeO)MeNH-HCl-Me₂AlCl gave the N-methoxy-N-methyl amide in good yield even in the case of the hindered lactones and esters. The results will be reported in due course.
- 10. The epoxy aldehyde 9 was prepared from 1,3-propanediol. Private communication from Prof. I. Shimizu (Waseda University).
- 11. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
- 12. Oshima, M.; Yamazaki, H.; Shimizu, I.; Nisar, M.; Tsuji, J. J. Am. Chem. Soc. 1989, 111, 6280-6287.
- 13. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769-3772.
- 14. Data for 18: ¹H-NMR (500 MHz, CDCl₃) δ 0.85 (d, J = 6.4 Hz, C₁₂-Me), 0.91 (t, J = 7.0 Hz, H₂₈), 2.05 (s, Ac), 2.21 (s, SMe), 3.55 (ddd, J = 6.4, 8.9, 8.9 Hz, H9x1), 3.62 (ddd, J = 5.2, 8.9, 8.9 Hz, H9x1), 3.68 (ddd, J = 2.7, 7.9, 7.9 Hz, H₁₁), 3.80 (s, OMe), 3.91 (dd, J = 3.4, 8.5 Hz, H₁₉), 4.15 (dd, J = 8.5, 11.3 Hz, H₂₀x1), 4.35 (dd, J = 3.6, 11.3 Hz, H₂₀x1), 4.42 (d, J = 11.3 Hz, ArCH), 4.45 (d, J = 11.3 Hz, ArCH), 4.52 (d, J = 10.4 Hz, OCHS), 4.55 (d, J = 10.4 Hz, OCHS). ¹³C-NMR (67.5 MHz, CDCl₃) δ 14.07 (C₂₈), 14.58 (SMe), 18.01 (C₁₂-Me), 20.99 (MeCO), 23.17 (C27), 24.60 (CH₂), 25.34 (C₂₆), 27.48 (CH₂), 32.44 (CH₂), 32.76 (CH₂), 32.98 (CH₂), 33.39 (CH₂), 34.67 (Cl₂), 55.26 (OMe), 64.37 (C₂₀), 66.42 (OCH₂S), 67.01 (C₉), 72.67 (ArCH₂), 73.66 (C₁₁), 74.74 (C₁₈, Cl₉), 96.21 (C₁₅), 113.68 (Ar), 129.20 (Ar), 130.87 (Ar), 159.03 (Ar), 170.87 (MeCO).
- 15 The structure of 21 was elucidated from the chemical shift of C₁₅ (106.9 ppm) and the NOE between H₁₁ and H₂₀. Data for 21: ¹H-NMR (500 MHz, CDCl₃) δ 0.86 (d, J = 6.4 Hz, C₁₂-Me), 0.91 (t, J = 6.8 Hz, H₂₈), 2.03 (s, Ac), 2.04 (s, Ac), 2.07 (s, Ac), 3.49 (ddd, J = 2.6, 8.0, 10.4 Hz, H11), 4.17 (ddd, J = 6.8, 8.1, 10.7 Hz, H9x1), 4.24 (dd, J = 8.6, 12.0 Hz, H₂₀x1), 4.32 (ddd, J = 5.1, 8.6, 10.7 Hz, H9x1), 4.51 (dd, J = 2.1, 12.0 Hz, H₂₀x1), 5.17 (dd, J = 2.1, 8.6 Hz, H₁₉).
- We have already reported the synthesis of dicarboxylic monoesters with cyclic anhydride under high pressure for the construction of the C₁₈-hemisuccinate moiety. Shimizu, T.; Kobayashi, R.; Ohmori, H.; Nakata, T. Synlett 1995, 650-652.