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C13-C25 Segment of Bafilomycin A1. 
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Abstract :  A boron-mediated, syn-aldol coupling between ethyl ketone 8 and aldehyde 9, 
followed by directed hydrogenation at C16 and acetonide hydrolysis, gives the C13-C25 
segment 6 of bafflomycin A1. 

Bafilomycin A1 (1 in Scheme 1) belongs to a family of structurally related polyketide macrolide 

antibiotics, which include other bafdomycins, 1 the eoncanamycins 2 and the hygrolidins. 3 First isolated in 1983 
by Werner et al.,l&b bafilomycin AI is a potent and specific ATPase inhibitor 4 which shows broad spectrum 
antibiotic activity. The stereechemistry, originally proposed by Corey 5 from NMR analysis in combination with 
molecular modelling, was determined to be as shown in 1 by X-ray crystallography, lc The first total synthesis 
of bafilomycin AI was reeendy completed by Evans and Calter, 6 whilst a synthesis of a C13---C25 segment has 
been reported by the Roush group. 7 
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AS part of our work on polypropionate synthesis, 8 we recently found that ot-methylene-p-alkoxy 
aldehydes such as 2 produce useful levels of 1,3-asymmetric induction in aldol reactions with simple ketones. 
For example, Ti(IV), B and Sn(II) enolates 3 gave the 2,3-syn-3,5-anti adduct 4 preferentially, which can be 
stereoseleetively hydrogenated, as in 4 ---* 5. 8a The macrolide bafilomycin A1 appeared to be an ideal target to 
test this methodology, due to the occurrence of the same syn-anti-syn stereotetrad spanning C15--Ct8 (cf. 5). 
We now report a novel aldol construction of the C13--C25 bafdomycin A1 segment 6 based on this approach. 

Our synthetic strategy (Scheme 1) relied on: (i) introduction of the C16 stereocentre in 6 by hydroxyl- 
directed hydrogenation of alkene 7; (ii) C17--C18 bond formation by aldol coupling between ketone 8 and 
aldehyde 9. Achieving a useful level of remote stereocontrol (by 1,3-induction from 9 and/or 1,4-induction 
from 8) was an essential requirement for the aldol step. 
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The synthesis of the coupling partners chosen for the critical C17--C18 aldol connection is summarised in 

S c h e m e  2. Ketone 8, 9 with acetonide protection across the C21 and C23 hydroxyls, was efficiently prepared 
using an ant/aldol reaction between the (S)-lactate-derived ketene 10 and isobutyraldehyde. Using our standard 
conditions, 10a the E-enol dicyclobexylborinate derived from 10 gave the anti-ant~ adduct 11 in 97% yield with 
97% ds. After conversion 10b into aldehyde 12 (81%), a Felkin-Anh controlled addition of the allylsilane 13,11 
promoted by TiCLI, gave an 84% yield of 14 with 97% ds. Alkene 14 then led to ketone 8, [ct]i~ ° = -9.1 ° (c 
3.0, CHCI3), via a 3-step sequence (81% overall) of silyl ether deprotection, acetonide formation, and oxidative 
double bond cleavage. The synthesis of the aldehyde 9 relied on the Evans alkylation of the chiral glycolate 

15.12 Alkylation of the Ti(IV) enolate of 15 with BnOCH2CI gave 16 (85%) with high selectivity (97% ds). 

Transamination to the Weinreb amide, 13 followed by addition of the organolithium reagent 17,14 then gave the 
enone 18 (75%). Luche reduction (NaBH4, CeC13) 15 of 18 proceeded with 98% ds in favour of the anti glycol 

derivative 19 (97%). Finally, silyl protection and acetal hydrolysis gave a 74% yield of the enal 9, [Cq2D ° = 
+17.6 ° (c 1.6, CHCI3). 
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Scheme 2 (a) CHex2BCl, Me2NEt, Et20, 0 °C, 3 h; iprCHO, -78 -4 -20 °C, 15 h; aq. MeOH, H20 2, 0 °C, 1 h. (b) 
TBSOTf, 2,6-1utidine, CH2CI 2 -78 °C, 2 h. (¢) NaBH4, MeOH, 0 °C, 30 min; K2CO 3, MeOH, 20 °(2, 3 h. (d) NalO4, aq. 
MeOH, 20 °C, 30 min. (e) 13, TiCI4, CH2CI 2, -94 °C, l0 min. (/) TBAF, THF, 20 °C, 30 min. (g) (MeO)2CMe 2, 
PPTS, CH2Ci2, 20 °C, 4 h. (h) OsO4, NMO, tBuOH/THF/H20, 20 °C, 4 h; NaIO4, pH 7 buffer, 10 min. (i) TiCI4, 
ipr2NEt, CH2C12, 0 °C, 1 b; BnOCH2CI, 0 °C, 16 h. (/) MeONHMe.HCI, Me3AI, CH2C12, -15 ~ 20 °C, 20 h. (k) 17, 
THF, -78°C, 2 h. (/), CeCI3.7H20, NaBH4, EtOH, -78 °C, 1.5 h. (m) TBSOTf, 2,6-1utidine, THF, O °C, 20 min; EtOH. 
(n) (CO2H)2, aq. THF, 20 °C, 20 h. 

The z-facial selectivities of the ketone 8 and aldehyde 9 in aldol reactions were investigated separately 

(Scheme 3). As in our previous study, ga the 1,3-asymmetric induction arising from the chiral aldehyde 9 was 

examined in reactions with the Sn(n), B and Ti(IV) enolates of diethylketone. In all cases, the major syn adduct 

20, corresponding to si-face attack on the aldehyde was obtained, 16 with good sdectivity for both the Sn0I) 
and B enolates (20 : 21 = ca. 4 • 1). Minor amounts of anti adducts were also obtained. The sense of induction 
agreed with that from our earlier work (cf. 2 + 3 ---> 4). 8a Contrary to our previous results, the TiC14-mediated 
reaction provided low facial selectivity here (20 : 21 = 1.2 : 1). The 1,4-induction in the syn aldol reaction of 
chiral ketone 8 with methacrolein was examined next. The Sn(II) enolate derived from 8 showed little 
selectivity for 22 vs 23. However, the corresponding Z-enol di-n-butylborinate gave improved results. With 
CH2C12 or Et20 as solvent, the syn adduct 22, again corresponding to si-face attack on the aldehyde, 16 

predominated (22 : 23 = 5 : 1 in Et20). Cyclic protection of the 1,3-diol in 8 proved essential for good aldol 
stereocontrol. 17 
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These studies suggested that matched double diastereodifferentiation should result from a boron- 
mediated syn aldol coupling at C17---C18 of the two components. The desired (17S)-adduct 24 was accordingly 

obtained, with 82% ds, from addition of the Z-enol di-n-butylborinate of ketone 8 to aldehyde 9. Hydroxyl- 

directed hydrogenation of alkene 24 using (Ph3P)3RhC1 $a,18 introduced the C16 stereocentre with excellent 
selectivity (>99 : 1 ds), giving 25 in 96% yield. This has the required syn-anti-syn C15-C18 stereotetrad of 
bafilomycin A1. Under acidic conditions in methanol, the acetonide and silyl ether in 25 were removed and 
cyclisation occurred to give a 2 : 1 mixture of the spiroacetal 269 and the hemiacetal 27 (a C13-C25 segment of 
L681,110 B1) 19 in 60% yield. Note that both these compounds had incorporated methanol at C2I (presumably 
by dehydration to the enone and conjugate addition of MeOH). 20 NOE studies performed on 26 served to 
confirm the stereochemistry at C16, C17 and C18. Careful acetonide hydrolysis and cyclisation of 25 under 
aqueous acidic conditions, however, provided an 83% yield of 69, [ct]~ ° = +8.0 ° (c 0.25, CHC13), 

corresponding to the required C13-C25 segment of bafilomycin AI. 
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Scheme 3 (a) Sn(OTf)2, Et3N, CH2C12, -78 °C, 2 h; RCHO, -78 ~ -25 °C, 3 h. (b) nBu2BOTf, ipr2NEt, Et20, 
-78°C, 2 h; RCHO, -78 ---> -25 °C, 16 h. (c) TiCLI, CH2C12, -78 °C, 30 rain; ipr2NEt, 1 h; RCHO, 1 h. (d) as for b, 
except reaction in CH2Ci2. (e) H2 (15 bar), Phil, (Ph3P)3RhCI, 16 h. (]) conc. HCI, MeOH (1:10). -7 °C, 1.5 h. (g) 40% 
aq. l-IF, 4:1 MeCN:H20, 20 °C, 1 h. 

In conclusion, the hemiacetal 6, which contains the C13-C25 subunit of the macrolide bafilomycin A1, 
has been synthesised in 11 steps and 22% overall yield starting from ketone (S)-10. Largely due to the 
efficiency of the key aldol coupling/hydrogenation sequence, 8 + 9 ----> 24 --> 25, a high level of stereocontrol 
is realised (73% overall ds for the introduction of 9 stereocentres). 
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