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ABSTRACT

Triamino-s-triazine derivatives 3a, 4, and 5 have been prepared, and their cationic states have been analyzed electrochemically. At 298 K, 3a+

has a limited lifetime in CH2Cl2 solution. However, 4+ and 5+ are long-lived under such conditions, and quartet states of 43+ and 53+ are
observed by ESR spectroscopy. Variable-temperature ESR analysis and NMR shift susceptibility measurements indicate that 53+ is a doublet
ground state with a populated quartet state.

Ferromagnetic coupling between electron spins in organic
polyradicals is promoted by certain spin-connection geom-
etries.1 For example,m-phenylene connection of amino
radical cations favors spin alignment, and 1,3,5-tris(di-p-
anisylamino)benzene trication (13+) has been shown to be a
ground-state quartet triradical.2

In this report, we consider amino-type radical cations
connected via ans-triazine nucleus. Theoretical predictions

have suggested that amino-substituteds-triazine polycations
will prefer high-spin ground states. In 1989, Miller et al.
proposed that diamino-s-triazines (2a) might have triplet

dication ground states.3 More recently, Yamabe et al.4

reported ab initio calculations that predicted a 12.5 kcal mol-1

triplet ground-state preference for2a2+. These workers
concludeds-triazine to be a strong ferromagnetic coupling
unit for radicals derived from aza-substituted systems.
Moreover, Baumgarten and Zhang5 have reported AM1-CI
calculations of triamino-s-triazine trications2b3+ that suggest
a 23 kcal mol-1 quartet preference for this trication. Here,
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we report preliminary experimental findings regarding amino-
substituted triazine polyradical cations.6

Initially, a set of tris(arylamino) triazines (3) (Scheme 1)
were prepared for study.7 Unfortunately, the polyradical

cations in this series were too short-lived for easy handling
(lifetimese seconds as determined electrochemically), and

the high oxidation potentials made dication and trication
generation difficult.

Figure 1 shows a cyclic voltammogram of3a. One-
electron oxidation was quasi-reversible under ambient condi-
tions. In cold CH2Cl2, the first two oxidations became
chemically reversible, yieldingE° ′(1) ) 1.12 andE° ′(2) )
1.42 V vs SCE. These values are 0.45 and 0.55 V higher
than those for1.2a In an attempt to improve the chemical
stability of the aminotriazine cations and lower theEox values,
we next prepared the correspondingp-phenylenediamine (p-
PD) triazine analogues4 and5 (Scheme 1). As previously
noted,8 substitution of arylamino groups byp-PD units
generally lowers the oxidation potentials of the system and
increases the stability of aryl-linked polyradical cations.

Electrochemical oxidation of5 by cyclic voltammetry
(CV) gave two chemically reversible waves at room tem-
perature (Figure 2). Controlled potential coulometry at 0.90

V indicated that three electrons per molecule were removed
at this potential (Figure 3). The associated formal oxidation
potentials were assigned asE° ′(1) ≈ 0.71,E° ′(2) ≈ E° ′(3)
≈ 0.78 V vs SCE. Oxidation of4 showed a similar CV trace
with E° ′(1) ≈ 0.90,E° ′(2) ≈ E° ′(3) ≈ 1.03 V vs SCE.

Scheme 1

Figure 1. Voltammogram of3a (2.0 mM) at 298 K in CH2Cl2
(0.1 M Bu4NBF4) with scan rates of (solid) 100, (dash-dot) 50,
and (dot) 20 mV s-1

Figure 2. Voltammogram of5 (1.0 mM) at 298 K in CH2Cl2 (0.1
M Bu4NBF4) with a scan rate of 20 mV s-1.
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Oxidation of 4 or 5 by 1 molar equiv of thianthrenium
perchlorate9 (TH+ClO4

-) gave green solutions of4+ or 5+

that showed a single broad-line ESR spectrum. Presumably,
no hyperfine coupling is observed in these spectra because
of the numerous small splittings which effectively line
broaden the signal.

Treatment of4 with 3 molar equiv of TH+ClO4
- in

butyronitrile gave a43+ solution that, when frozen, shows a
quartet ESR spectrum at 100 K with aD value of 0.0023
cm-1 (Figure 4). ThisD value is close to that (0.0026 cm-1)

observed for them-phenylene analogue 1,3,5-tris(triphenyl-
p-phenylenediamino)benzene triradical trication.8 Similarly

prepared,53+ gave a quartet ESR signal with aD value of
0.0015 cm-1. In frozen media, both43+ and 53+ are quite
stable, but in fluid solution43+ decays in minutes at room
temperature as deduced by ESR and NMR (vida infra)
analyses.

To obtain the spin state ordering for53+, its magnetic
susceptibility was measured by the NMR shift method.10 (The
solution instability of 43+ precluded its NMR analysis.)
Measurements on5+ and53+ in CDCl3 at 298 K yieldedµeff

values of 1.72( 0.06 and 2.43( 0.06 µB, respectively.
Theoreticalµeff values for pure doublet and quartet species
are 1.73 and 3.87µB, respectively. Therefore, we conclude
53+ to be a mixture of quartet and doublet states at 298 K
with 24% quartet and 76% doublet, the latter being the
ground state under these conditions.

This result is also consistent with the nonlinear temperature
dependence found for the53+ ∆ms ) 2 signal intensity
measured by ESR in frozen butyronitrile over the range of
133-87 K (Figure 5). Here, a lower ESR signal intensity

than expected from linear Curie Law behavior is observed
as the temperature is lowered in this range, indicating an
increase in the doublet/quartet ratio.

In summary, we conclude thatp-PD radical cations
attached 1,3,5- to ans-triazine core have a slight energetic
preference for spin pairing, yielding ground state doublet
triradical trications with observable low-lying quartet excited
states. Compared to the 1,3,5-phenyl-substituted tris(p-PD)
structure, the triazine-core compound5 is harder to oxidize
(∆E° ′(1) ) 0.3 V), yields trications of lower chemical
stability (the former are isoable, whereas the latter are not),
and gives triradical trications with lowerµeff values (2.43 vs
3.04). If deconjugation of thep-PD radical cations from the
strongly electron-withdrawings-triazine nucleus occurs in
these polycations, then the apparent discrepancy between
theoretical predictions of spin alignment in aminotriazine
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Figure 3. Controlled potential coulometry at 0.9 V vs SCE for5
(0.0113 mmol) at 298 K in CH2Cl2 (0.1 M Bu4NBF4).

Figure 4. ESR spectrum of53+ in frozen PrCN at 100 K.

Figure 5. ESR∆ms ) 2 signal intensity for53+ in frozen PrCN
as a function of 1/T.
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polyradicals and the experimental observation of a low-spin
ground state for53+ would be rationalized.
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