Mass Spectra of 3-Phenyl-2,1-benzisoxazoles

We report here the electron impact (EI) mass spectra of eight 3-phenyl-2,1-benzisoxazoles (1), seven of which bear substituents in the benzo ring at positions 5 or 6.

The data for the unsubstituted compound (1, R = H) are summarized in Table 1. The origins of all these fragment ions have been established by observations of either second fieldfree region (2nd FFR) metastable ions (m^*) or by means of linked-scan spectra (B/E) from the 1st FFR. The characteristic initial fragmentations of the molecular ion are: loss of CO followed by H^{*}; loss of C₆H₄N to leave $[C_7H_5O]^+$ $(m/z \ 105)$; elimination of C₇H₅N to give the ion at m/z 92 of composition C₆H₄O; and formation of Ph⁺. These fragments are significantly different from those of 2,1-benzisoxazole, which is reported¹ to lose only CO and HCN.

This mass spectrum of 3-phenylbenzisoxazole can best be understood by comparison with that of 9(10H)acridinone (2). The similarities (see Fig. 1) are striking, and the matching m/zvalues in the two spectra correspond to identical ion compositions. Figure 2 shows the linked scans (B/E) which identify the daughters of the two molecular ions, and again there is close correspondence. One must conclude that many of the ions produced from this benzisoxazole are identical to those produced from acridinone. The spectral similarities extend to the doubly charged ions (Table 2).

Nevertheless, the two spectra are not quite identical. The major difference is that 3-phenylbenzisoxazole loses C_6H_4N to

Figure 1. Fragmentation under El of (a) 3-phenyl-2,1-benzisoxazole, and (b) 9(10*H*)acridinone.

Table 1. Identifiable fragmentations in EI mass spectrum (z = 1) of 3-phenyl-2,1benzisoxazole

m/z	lon abundance (%)	Ion composition	Origin	Metastable
195	100	C, H _a NO	M+.	
194	3.4	C ₁₃ H ₈ NO	M – H	B/E
167	43.4	C ₁₂ H ₀ N	M – CO	m* 143.0, B/E
166	26.3	C ₁₂ H ₈ N	167 – H	<i>m</i> * 165.1
		.2 0	<i>M</i> – (CO + H)	B/E
141	2.2		167 - C ₂ H ₂	,
140	9.0	C ₁₁ H ₈ ^a	167 – HCN	<i>m</i> * 117.5⁵
		C ₁₀ H ₆ N ^a	$M - (CO + H + C_2H_2)$	ь
139	12.7	C ₁₁ H ₇	166 - HCN	<i>m</i> * 116.5
			M - (CO + H + HCN)	B/E
105	10.1	C ₇ H ₅ O	$M - C_6 H_4 N$	B/E
92	20.9	C ₆ H₄O	$M - C_7 H_5 N$	B/E
77	69.8	C ₆ H ₅	$M - C_7 H_4 NO$	B/E
			105 - CO	<i>m</i> * 56.5
64	8.0	C₅H₄	92 – CO	<i>m</i> * 44.6
51	40.4	C₄H₃	77 – C ₂ H ₂	<i>m</i> * 33.9

^a These two ions, $C_{11}H_8$ and $C_{10}H_6N$, could not be resolved from one another or from ${}^{12}C_{10}{}^{13}C_1H_7$. The experimental mass measurement corresponded to $C_{10}H_6N$. ^b The *B/E* linked scan (see Fig. 2) indicates that M⁺⁺ loses 55 mass units. This mass loss fits either or both of M - (CO + HCN) and M - (CO + H + C_2H_2).

0030-493X/89/010070-04 \$05.00 © 1989 by John Wiley & Sons, Ltd.

Received 4 May 1988 Accepted 21 June 1988

Figure 2. Linked scans (B/E) on molecular ions $(m/z \ 195)$ of (a) 3-phenyl-2,1-benzisoxazole, and (b) 9(10H) acridinone.

yield PhCO⁺ (m/z 105, 10.1% abundance), whereas acridinone has no significant ion here (observed abundance <0.2%). In addition, the benzisoxazole has abundant ions at m/z 92, 77, 64 and 51, whereas acridinone has such feeble ones (abundance <5%) that they were disregarded by Bowie and co-workers² in their published discussion of the spectrum.

We suggest Schemes 1, 2, and 3 to accommodate all these observations. In Scheme 1, the molecular ion (a) of 3-phenylbenzisoxazole ring-opens to a nitrene (b) and then recyclizes via nitrene insertion into the phenyl group, thus forming the acridinone molecular ion (d) along the lines Hawkins and Meth-Cohn³ have advanced for the high-temperature rearrangement of neutral 3-arylbenzisoxazoles to acridinones. The azirene ion (c) is an equivalent formulation of the nitrene and would likewise lead to the acridinone cation (d). Our observed successive losses of CO, H' and HCN are well documented for the acridinone ion;² our own data are shown in Figs 1 and 2. Scheme 1 includes ions (b or c) from which the observed ion PhCO⁺ could be formed.

In Scheme 2 we show rearrangement of the ion (a) into the phenylimine ketene (f), presumably via the N—O bond cleavage and phenyl radical migration pathway which Simons et $al.^4$ have suggested for the rearrangement of simple isoxazole

Table 2.	Doubly benziosox	charged azole (1) and	ions from 9(10 <i>H</i>)acridinor	3-phenyl-2,1- ne (2)
		Observed		
Compound	m/z	(%)*	Assignmer	nt <i>m</i> *
1	97.5	4.4	M ²⁺	
	83.5	7.8	M – CO	71.5
	70.5	3.8	167 – C ₂	H ₂ 59.6
	70	1.7	167 – HC	N 58.7
2	97.5	4.3	M ²⁺	
	83.5	15.5	M – CO	71.5
	70.5	5.8	167 – C ₂	H ₂ 59.6
	70	3.5	167 – HČ	SN 58.6

^a The abundance scale is relative to 100% for the singly charged molecular ion.

ions. This ion (f) can clearly account for loss of C_7H_5N (presumed to be PhCN or PhNC) and the subsequent ejection of CO, but is not a plausible parent for PhCO⁺.

Ramana and Srinivas⁵ have proposed that the phenylimine ketene ion (f) is a daughter in the EI spectrum of 2phenylaminobenzoic acid, and leads to the acridinone ion (d). If we assume that this route $(f \rightarrow d)$ can be followed in reverse to a small extent (see Scheme 3), then the presence of lowabundance ions at m/z 92 and 64 in the mass spectrum of acridinone is explained by Scheme 2. Loss of Ph⁺ from (f)likewise accounts for the presence of m/z 77, and its daughter at m/z 51, in the acridinone spectrum. An alternative ringopening of the acridinone ion $(d \rightarrow b \text{ or } c$ in Scheme 1) can be disregarded since PhCO⁺ is not a daughter ion of acridinone.

Unlike the other benzisoxazoles reported here, the 5- and 6-methyl compounds show substantial H-atom loss from their molecular ions (see Table 3). Carbon monoxide is lost from both the M^{++} and $[M - H]^+$ species. In the case of the latter fragmentation, the CO loss follows so closely upon the initial H⁺ loss that a metastable ion is observed for the $M - C^{+}HO$ process. These features are also observed for C-methylacridinones,⁶ which provide further strong argument that 3-phenylbenzisoxazoles and acridinones have many common ions in their EI spectra.

The overall picture for our eight 3-phenylbenzisoxazoles is that they yield a prominent molecular ion, and abundant ions at m/z 77, $[C_6H_5]^+$, and 51, $[C_4H_3]^+$. The ion at m/z 105, $[C_7H_5O]^+$, is invariably present, at modest abundance (8.8– 29.7%). The other fragmentations of 3-phenylbenzisoxazole (1, R = H) are not so readily apparent when R is not H. The ion formed by C_7H_5N loss is abundant (20.9%) when R = H, but is of minor intensity when R is methyl or halogen, and cannot be recognized when R is 5-NO₂ or 5-COOEt (see Table 3). In all these compounds, CO loss is an important step in the fragmentation, but often yields precedence to cleavages of substituents in the benzo ring. The $[M - CO]^{++}$ ion thus appears with very variable abundance, from 43% when R = H in (1), to zero when R is 5-NO₂ or 5-COOEt.

Scheme 3

Table 3. Mass spectra of substituted 3-phenyl-2-1-benzisoxazoles^a

5-Methyl-3-phenyl-2,1-benzisoxazole

 $\begin{array}{l} m/z \ 209 \ (100\%, \ C_{14}H_{11}NO, \ M^{++}); \ 208 \ (29.5, \ M-H); \ 194 \ (3.5, \ M-CH_3); \\ 181 \ (11.4, \ M-CO); \ 180 \ (51.0, \ M-CHO, \ m^* \ 155.1); \ 166 \ (6.7, \ 194 - CO \ or \\ 181 - CH_3); \ 153 \ (3.0, \ 180 - HCN, \ m^* \ 130.0); \ 106 \ (2.6, \ M-C_7H_5N); \ 105 \\ (12.2, \ M-C_7H_6N); \ 77 \ (41.5, \ M-C_8H_6NO \ and \ 105 - CO, \ m^* \ 56.5); \ 51 \\ (16.3, \ 77 - C_2H_2, \ m^* \ 33.8). \end{array}$

6-Methyl-3-phenyl-2,1-benzisoxazole

m/z 209 (100%, C₁₄H₁₁NO, M⁺⁺); 208 (18.9, M – H); 194 (2.9, M – CH₃); 181 (9.7, M – CO); 180 (61.8; M – CHO, m^* 155.0; 208 – CO, m^* 155.8); 166 (2.3, 194 – CO or 181 – CH₃); 153 (2.9, 180 – HCN, m^* 130.0); 106 (1.9, M – C₇H₅N); 105 (9.9, M – C₇H₆N); 77 (61.7, M – C₈H₆NO and 105 – CO, m^* 56.5); 51 (23.3, 77 – C₂H₂, m^* 33.9).

5-Chloro-3-phenyl-2,1-benzisoxazole

m/z 231, 229 (14.7, 48.1%, C₁₃H₈CINO, M⁺⁺); (230)^b, 228 (-^b, 0.9, M - H); 203, 201 (1.7, 4.7, M - CO, m^* 178.1, 176.2); 194 (29.6, M - CI, m^* 164.5, 163.0); 166 (44.1; 194 - CO, m^* 142.0; 203 - ³⁷CI, m^* 135.7; 201 - ³⁵CI, m^* 137.0); 140 (8.0, 166 - C₂H₂, m^* 118.1); 139 (10.1, 166 - HCN, m^* 116.4); 128, 126 (2.2, 8.4, M - C₇H₅N); 105 (10.2, M - C₆H₃CIN); 77 (100, M - C₇H₃CINO and 105 - CO, m^* 56.5); 51 (62.8, 77 - C₂H₂, m^* 33.8).

6-Chloro-3-phenyl-2,1-benzisoxazole

m/z 231, 229 (14.1, 36.9%, $C_{13}\rm H_8CINO, M^{+1}$); 203, 201 (0.2, 0.6, $M-\rm CO,\ m^*$ 178.2, 176.0); 194 (9.7, $M-\rm CI,\ m^*$ 164.3, 162.8); 166 (14.3, 194 – CO, m^* 142.0; 203 – $^{37}\rm CI$, 201 – $^{35}\rm CI$); 140 (1.5, 166 – $C_2\rm H_2$); 139 (3.0, 166 – HCN, m^* 116.3); 128, 126 (1.4, 5.6, $M-\rm C_7\rm H_5\rm N)$; 105 (8.8, $M-\rm C_6\rm H_3CIN$); 77 (44.6, $M-\rm C_7\rm H_3CINO$ and 105 – CO, m^* 56.5); 51 (100, 77 – $C_2\rm H_2$, m^* 33.8).

5-Fluoro-3-phenyl-2,1-benzisoxazole

m/z 213 (100%, C₁₃H₈FNO, M⁺⁺); 185 (22.0, M - CO, m* 160.7); 184 (19.5, 185 - H); 165 (0.5, 185 - HF, m* 147.2, or 184 - F); 157 (7.9, 184 - HCN, m* 134.0); 110 (5.6, M - C₇H₅N); 105 (9.7, M - C₆H₃FN); 77 (45.7, M - C₇H₃FNO and 105 - CO, m* 56.5); 51 (59.3, 77 - C₂H₂, m* 33.8).

5-Nitro-3-phenyl-2,1-benzisoxazole

 $\begin{array}{l} m/z \ 240 \ (87.1\%, \ C_{13}H_8N_2O_3, \ M^{+*}); \ 239 \ (0.1, \ M-H); \ 210 \ (4.1, \ M-NO); \\ 194 \ (13.7, \ M-NO_2, \ m^* \ 156.8); \ 182 \ (10.2, \ 210-CO, \ m^* \ 157.8); \ 166 \\ (53.3, \ 194-CO, \ m^* \ 142.0); \ 140 \ (19.4, \ 166-C_2H_2, \ m^* \ 118.0); \ 139 \\ (30.6, \ 166-HCN, \ m^* \ 116.4); \ 105 \ (29.7, \ M-C_6H_3N_2O_2); \ 77 \ (100, \ M-C_7H_3N_2O_3 \ and \ 105-CO, \ m^* \ 56.5); \ 51 \ (5.0, \ 77-C_2H_2, \ m^* \ 33.8). \end{array}$

5-Ethoxycarbonyl-3-phenyl-2-,1-benzisoxazole

m/z 267 (100%, C₁₈H₁₃NO₃, M⁺⁺); 239 (31.2, M - C₂H₄, m* 214.0); 222 (92.2, M - C₂H₅O, m* 184.8); 195 (6.0, 239 - CO₂, m* 159.2); 194 (32.9, 222 - CO, m* 169.5); 167 (7.2, 195 - CO, m* 143.0); 166 (31.5, 194 - CO); 105 (22.9, M - C₉H₈NO₂); 77 (81.4, M - C₁₀H₈NO₃ and 105 - CO, m* 56.5); 51 (64.8, 77 - C₂H₂, m* 33.8).

^a All assignments are supported by correct ion compositions. ^b One (M – H) peak could not be resolved from the ¹³C satellite of the m/z 229 molecular ion.

The 3-phenyl-2,1-benzisoxazoles were synthesized by pyrolysis of corresponding 2-azidobenzophenones.⁷ Samples were purified by recrystallization. No impurities could be detected by thin-layer chromatography (silica gel G adsorbent, benzene or chloroform elution), or by infrared spectroscopy.

All mass spectra were obtained by EI (70 eV). Highresolution spectra were recorded with an AEI MS-30 singlebeam instrument whose source operated at 200 °C. The DS-55 data-handling system derived ion compositions which fitted the measured m/z values closer than 4 ppm. Perfluorokerosene was used as internal standard. Second FFR metastable ions were recorded photographically with either a VG Micromass or the MS-30 instrument. Measured values of m^* agreed within 0.2 units of calculated values. First FFR metastables were recorded by means of linked scans (B/E) with a VG Analytical 7070E spectrometer.

We are indebted to Mr Neil Keats for recording the MS-30 spectra, to Dr Roger Summons of the Bureau of Mineral Resources, Canberra, for recording the linked scans, and to Dr John MacLeod for the Research School of Chemistry, Australian National University, for helpful discussions. LEONARD K. DYALL (to whom correspondence should be addressed) and GARY J. KARPA

Department of Chemistry, University of Newcastle, NSW 2308, Australia

References

- A. Macquestiau, Y. van Haverbeke, C. de Meyer and R. Flammang, Org. Mass Spectrom. 9, 149 (1974).
- J. H. Bowie, R. G. Cooks, R. H. Prager and H. M. Thredgold, Aust. J. Chem. 20, 1179 (1967).
- 3. D. G. Hawkins and O. Meth-Cohn, J. Chem. Soc., Perkin Trans. 1 2077 (1983).
- 4. B. K. Simons, R. K. M. R. Kallury and J. H. Bowie, *Org. Mass Spectrom.* 2, 739 (1969).
- 5. D. V. Ramana and R. Śrinivas, Org. Mass Spectrom. 19, 438 (1984).
- R. M. Acheson, R. T. Aplin and R. G. Bolton, *Org. Mass Spectrom.* 12, 518 (1977).
- 7. L. K. Dyall and G. J. Karpa, Aust. J. Chem. 41, in press (1988).