

\$0957-4166(96)00087-0

Enantiopure Aminotriol from D-Isoascorbic Acid Synthesis of D-*Threo*-C-18-Sphingosine.¹

Arounarith Tuch, Michèle Sanière, Yves Le Merrer* and Jean-Claude Depezay

Université René Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, associé au CNRS, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France.

Abstract : Enantiopure suitably *N*,*O*-protected aminotriol has been prepared from D-isoascorbic acid. The utility of this homochiral building block in the synthesis of (2R,3R)-D-*threo*-C₁₈-sphingosine is described *via* a Wittig reaction on a *N*,*O*-protected β -amino- α -hydroxyaldehyde. Copyright © 1996 Elsevier Science Ltd

When suitably protected, enantiopure aminotriols **A** are interesting chiral building blocks. They can be converted into 3-deoxy-3-amino-tetrose **B** as well as 2-deoxy-2-amino-tetrose C,² versatile precursors for the synthesis of biologically active compounds such as (Scheme 1):

- sphingosine or phytosphingosine,^{3,4} major backbone components of glycosphingolipids which play an important role in biological processes on cell surfaces.

- 3-amino-2-hydroxyacid (AHDA) which is the *N*-terminal moiety of microginin,⁵ a linear pentapeptide isolated from the freshwater blue-green alga *Microcystis aeruginosa*.

In this paper, we would like to report, firstly the synthesis of the enantiopure aminotriol A suitably protected from D-isoascorbic acid, and secondly its transformation into D-threo-sphingosine.

For the aminotriol **A** we have selected the following protecting groups : P^2 tert-butyldiphenylsilyl (TBDPS), P^3 tert-butoxycarbonyl (Boc), and $P^4 N, O$ -methylethylidene. The chirality emarges from the D-isoascorbic acid in which the nitrogen atom was introduced with an inversion of configuration (Scheme 2).

As previously described,⁶ the D-isoascorbic acid can be converted in three steps (Scheme 3) into ethyl-3,4-O-methylethylidene-D-erythronate 1 by ketalisation, oxidative cleavage of the butenolide moiety and esterification with an overall yield of 67%. Activation of the hydroxyl group of 1 was carried out by trifluoromethanesulfonylation (Tf₂O, CHCl₃, - 60°C); the triflate was then converted *in situ* into the ethyl (2*S*, 3*S*)-2-azido-3,4-isopropylidenedioxy-butanoate **2** (95% yield) upon treatment with tetramethylguanidinium azide (TMGA).⁷ The reduction of **2** by LiAlH₄ in THF produced the aminoalcohol **3** in quantitative yield, then the latter was protected as *tert*-butyldiphenylsilyl ether **4** (TBDPSCI, Et₃N, 4-DMAP cat, CH₂Cl₂, 20°C, 90%). Acidic hydrolysis of **4** (TFA, H₂O, - 5°C) gave the aminodiol **5**.

a) *i*- (CH₃)₂C(OCH₃)₂, CuSO₄, (CH₃)₂CO; *ii*- K₂CO₃, H₂O₂, H₂O; *iii*- C₂H₅I, CH₃CN reflux, 67% overall yield. b) *i*- (CF₃SO₂)₂O, 2,6-lutidine, CHCl₃, -60°C; *ii*- TMGA, -60°C to 20°C, 95%. c) LiAlH₄, THF reflux, 2h. 100% d) TBDPSCl, NEt₃, 4-DMAP cat, CH₂Cl₂, 24h, 20°C, 90%. e) TFA/H₂O 1/1, 5h, -5°C. Scheme 3

To access to D-*threo*-sphingosine from 5 we have to transform the primary alcohol function into an alkenyl chain; for this, the other functionnal groups must be concealed. Two approaches (*path a* and *b*) have been investigated to obtain the N-Boc-oxazolidine 9 (Scheme 4), which differ only by the order of introduction of the two protecting groups :

path a: Condensation of the aminotriol 5 with dimethoxypropane in acetone in the presence of *p*-toluenesulfonic acid resulted in the clean formation of oxazolidine 6 (72% yield), then reaction with di-*tert*-butoxycarbonyl oxide afforded the *N*-Boc-oxazolidine 9 (35% yield).

path b : Treatment of the aminotriol **5** with 2-*tert*-butoxycarbonyloximino-2-phenylacetonitrile (Boc-ON)⁸ in the presence of triethylamine in dioxane-water led to the *N*-Boc aminotriol **7** (83% yield). Its transformation into the *N*-Boc-oxazolidine **9** required successivly the selective *o*-nitrobenzoylation of the primary alcohol function (o-NO₂C₆H₄COCl, pyr, CH₂Cl₂, 97%),¹⁰ the oxazolidine formation [(CH₃)₂C(OCH₃)₂, (CH₃)₂CO, BF₃-Et₂O cat, 87%] and the methanolysis of the benzoate protecting group (CH₃OH/THF, K₂CO₃, 95%).

Although path a is shorter than path b, it is less effective (25% and 67% overall yield, respectively for path a and b).

a) (CH₃)₂C(OCH₃)₂, (CH₃)₂CO, TsOH, 5 days, 20°C, 72%. b) Boc₂O, NEt₃, CH₂Cl₂, 3 days, 20°C, 35%.
c) Boc-ON, NEt₃, dioxane/H₂O 1/1, 83% from 4. d) *o*.NO₂C₆H₄COCl, pyridine, CH₂Cl₂, 4 days, 20°C, 97%.
e) (CH₃)₂C(OCH₃)₂, (CH₃)₂CO, BF₃-Et₂O cat, 5 days, 20°C, 87% f) K₂CO₃, CH₃OH/THF 1/1, 24h, 20°C, 95%. Scheme 4

Swem oxidation¹¹ of the primary alcohol function of **9** (Scheme 5) led to the crude aldehyde **10** which was immediately condensed with the required ylide, obtained from the tetradecyltriphenylphosphonium bromide, to reach **11** as an isomer mixture (Z/E 98/2; 95% yield). An isomerisation reaction is brought about by irradiation of **11** in the presence of phenyl sulfide¹² leading to an isomer mixture (Z/E 30/70; 91% yield), from which the desired E-isomer **E-11** was easily separated. Finally, acidic hydrolysis (TFA, H₂O, 75%) of **E-11** resulted in the D-*threo*-sphingosine which was characterized by its triacetyl derivative. The specific rotation, melting point and ¹H and ¹³C NMR spectra were fully in agreement with the literature data,¹³ thus confirming that no epimerisation had occurred during this procedure.

a) (COCl)₂, DMSO, NEt₃, CH₂Cl₂. b) C₁₃H₂₇CH₂PPh₃ Br⁻, nBuLi, THF, -78°C to 20°C, 3 days, 95% from **9** (Z/E : 98/2). c) hν, PhSSPh cat, cyclohexane, 91%, (Z/E 30/70). d) TFA/H₂O 1/1, 24h, 20°C, 75%. e) Ac₂O, pyr, 20°C, 12h, 60%.

Scheme 5

In conclusion, a suitably N,O-protected enantiopure aminotriol, a precursor of 2-deoxy-2-amino or 3-deoxy-3-amino-threoses, has been prepared from D-isoascorbic acid. The utility of this homochiral building block was demonstrated by the total synthesis of D-*threo*-sphingosine. Further utilization of this flexible methodology in the synthesis of other biologically active compounds will be reported in due course.

EXPERIMENTAL SECTION

Prior to use, tetrahydrofuran (THF) and diethylether (Et₂O) were distilled from sodium-benzophenone and dichloromethane (CH₂Cl₂) from P₂O₅. CH₂Cl₂ and ethyl acetate (EtOAc) were filtered on K₂CO₃ prior to use. ¹H NMR (250 MHz) and ¹³C NMR (62,9 MHz) spectra were recorded in CDCl₃ at room temperature (unless indicated) on a Bruker AM 250. Chemical shifts are reported in δ (ppm) and coupling constants are given in Hertz. High Resolution Mass Spectra were recorded in Service de Spectrométrie de Masse, Université Pierre et Marie Curie. Optical rotations were measured on a Perkin Elmer 241C polarimeter with sodium (589 nm) lamp at 20°C. All reactions were recorded under argon atmosphere, and were monitored by thin-layer chromatography with Merck 60F-254 precoated silica (0.2 mm) on glass. Chromatography was performed with Merck Kieselgel 60 (200-500 µm) or 60H (5-40 µm). Spectroscopic (¹H and ¹³C NMR, MS) and/or analytical data were obtained using chromatographically homogeneous samples.

Ethyl (2S,3S)-2-azido-3,4-isopropylidenedioxy-butanoate (2)

To a stirred solution of ethyl 3,4-*O*-methylethylidene-D-erythronate 1⁶ (30 g, 147.7 mmol) in CHCl₃ (350 mL) at -60°C, trifluoromethanesulfonic anhydride (30 mL, 177.2 mmol) and 2,6-lutidine (20.6 mL, 177.2 mmol) were successively added. After 30 min stirring at -60°C, the tetramethylguanidinium azide¹⁴ (70 g, 443 mmol) was slowly added (30 min). Then the reaction mixture was slowly warmed to 20°C and was stirred for 12 h. Flash chromatography on a thin pad of silicagel (cyclohexane/EtOAc 1/1; Rf 0.5) afforded 31.80 g (95%) of **2** as a colorless oil. [α]_D -44 (c 1.05, CH₂Cl₂). IR (neat) 2100, 1740 cm⁻¹. ¹H NMR δ : 4.46 (1H, ddd, H-3, J_{2,3} = 5Hz, J_{3,4} = J_{3,4}' = 6.5Hz), 4.24 (2H, q, OEt, J = 7.5Hz), 4.06, 3.89 (2H, 2dd, H-4,4', J_{4,4}' = 8.5Hz, J_{3,4} = J_{3,4}' = 6.5Hz), 3.68 (1H, d, H-2, J_{2,3} = 5Hz), 1.44, 1.30 (6H, 2s, CMe₂), 1.27 (3H, t, OEt, J = 7.5Hz). ¹³C NMR δ : 167.8 (C-1), 110.2 (CMe₂), 75.6 (C-3), 66.1 (C-4), 62.4 (C-2), 61.9 (O<u>CH₂CH₃</u>), 25.7, 24.6, (C<u>Me₂</u>), 13.8, (OCH₂CH₃). Anal. Calcd. for C₉H₁₅N₃O₄ : C, 47.16; H, 6.60, Found : C, 47.17; H, 6.49.

(2S,3R)-3-Amino-1,2-isopropylidenedioxy-butan-4-ol (3)

To a stirred mixture of LiAlH₄ (6.7 g, 176.5 mmol) in dry THF (60 mL), at 0°C, was added dropwise the azidoester **2** (10.1 g, 44.1 mmol) in dry THF (60 mL). After stirring for 30 min at 20°C, the mixture was refluxed for 2.5 h, then H₂O (6.7 mL), 15% aqueous NaOH (6.7 mL) and H₂O (20.1 mL) were successively added to the cooled mixture. The precipitate was filtered and washed successively with diethylether and hot chloroform; the filtrate was then dried (Na₂SO₄). Concentration *in vacuo* afforded 7 g of **3** as a colorless oil in quantitative yield. [α]_D -2.7 (c 1.24, CH₂Cl₂). IR (neat) 3360, 3300 cm⁻¹. ¹H NMR δ : 4.08-3.90 (2H, m, H-1',2), 3.75-3.65 (1H, m, H-1), 3.53 (1H, dd, H-4, J_{4,4'} = 11Hz, J_{3,4} = 5Hz), 3.41 (1H, dd, H-4', J_{4,4'} = 11Hz, J_{3,4'} = 6Hz), 2.80 (1H, m, H-3), 1.39, 1.30 (6H, 2s, CMe₂). ¹³C NMR δ : 108.2 (CMe₂), 76.9 (C-3), 65.9 (C-4), 62.7 (C-1), 54.6 (C-2), 25.9, 24.6 (CMe₂). Anal. Calcd. for C₇H₁₅NO₃ : C, 52.16; H, 9.38; N, 8.69, Found : C, 52.31; H, 9.49; N, 8.68.

(2S,3R)-3-Amino-4-tert-butyldiphenylsilyloxy-1,2-isopropylidenedioxy-butane (4)

To a stirred solution of **3** (1 g, 6.2 mmol) and triethylamine (863 µL, 6.21 mmol) in CH₂Cl₂ (40 mL) was added dropwise *tert*-butylchlorodiphenylsilane (1.6 mL, 6.2 mmol) then 4-dimethylaminopyridine (46 mg, 0.37 mmol). After stirring for 24 h, the reaction mixture was poured into water and extracted with CH₂Cl₂ (3x50 mL) and the combined organic layers were dried (Na₂SO₄), filtered and concentred *in vacuo*. Flash chromatography of the residue (cyclohexane/EtOAc 1/1; Rf 0.3) afforded 2.2 g (89%) of **4.** $[\alpha]_D$ -6 (c 1.15, CH₂Cl₂).¹H NMR δ : 7.62, 7.40 (10H, 2m, Ph), 4.05 (1H, q, H-2, J_{1,2} = J₁', 2 = 6Hz), 3.91 (1H, dd, H-1, J_{1,1}' = 8Hz, J_{1,2} = 6Hz), 3.69 (1H, dd, H-1', J_{1,1}' = 8Hz, J_{1',2} = 6Hz), 3.60 (1H, dd, H-4, J_{4,4}' = 10Hz, J_{3,4} = 6Hz), 3.52 (1H, dd, H-4', J_{4,4}' = 10Hz, J_{3,4}' = 6Hz), 2.83 (1H, q, H-3, J_{3,2} = 6Hz), 1.38, 1.33 (6H, 2s, CMe₂), 1.04 (9H, s, *t*Bu). ¹³C NMR δ : 135.2, 132.9, 129.4, 127.4 (Ph), 108.2 (CMe₂), 77.0 (C-3), 66.3, 66.0 (C-1,4), 54.8 (C-2), 26.5 (Me₃C), 26.3, 25.0 (CMe₂), 18.8 (Me₃C). MS (EI, %) 400 (M+1)'+, 384 (10), 342 (45), 298 (60), 240 (80), 199 (80). HMRS for C₂₃H₃₃NO₃Si (M⁺), calcd 399.2230, found 399.2228. Anal. Calcd. for C₂₃H₃₃NO₃Si : C, 69.13; H, 8.32; N, 3.51, Found : C, 69.26; H, 8.39; N, 3.49.

(2S,3R)-3-Amino-4-tert-butyldiphenylsilyloxy-butane-1,2-diol (5)

To a stirred mixture of 4 (9.67 g, 24.23 mmol) in water (121 mL) at -5° C was added dropwise trifluoroacetic acid (121 mL). After 5 h stirring, aqueous ammonia solution (33%) was added until pH 8-9, then the resulting mixture was extracted with CH₂Cl₂. The combined organic extracts were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude product was used in the next step without further purification.

(4R,5S)-4-tert-Butyldiphenylsilyloxymethyl-5-hydroxymethyl-2,2-dimethyl-1,3-oxazolidine (6)

To a stirred solution of the aminodiol **5** (35 mg, 0.097 mmol) in acetone (500 µL) in presence of a catalytic amount of *p*-toluenesulfonic acid was added 2,2-dimethoxypropane (24 µL, 0.195 mmol) at 20°C. After 5 days stirring, the mixture was concentrated *in vacuo*, then water (3 mL) was added. After extraction with CH₂Cl₂ (3x5mL), the combined organic extracts were washed with saturated aqueous NaHCO₃, then dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash chromatography of the residue (MeOH/CH₂Cl₂/NEt₃ 1/9/1‰; Rf 0.3) afforded 28 mg (72%) of **6**. $[\alpha]_D$ -3 (c 1.06, CH₂Cl₂). ¹H NMR δ : 7.60,7.38 (10H, 2m, Ph), 3.82-3.90 (2H, m, H-1",5), 3.72 (1H, dd, H-1", J_{1",5} = 4Hz, J_{1",1"} = 11Hz), 3.67 (1H, dd, H-1', J_{1',1}" = 11.5Hz, J_{1',4} = 3.5Hz), 3.47 (1H, dd, H-1', J_{1',1}" = 11.5Hz, J_{1',4} = 4.5Hz), 3.3-3.2 (1H, m, H-4), 1.44, 1.34 (6H, 2s, CMe₂), 1.05 (9H, s, *t*Bu). ¹³C NMR δ : 135.4, 132.7, 129.9, 127.7 (Ph), 94.9 (CMe₂), 78.9 (C-5), 62.8, 61.6 (CH₂OH, CH₂OTBDPS), 60.2 (C-4), 28.2, 28.0 (CMe₂), 26.8 (Me₃C), 14.1 (Me₃C). MS (EI, %) 384 (10), 342 (45), 206 (25), 199 (77), 188 (25), 181 (30), 162 (28), 130 (100). MS (CI,NH₃) : 400 (M+1)^{*+}(100).

(2S,3R)-3-N-tert-Butoxycarbonylamino-4-tert-butyldiphenylsilyloxy-butan-1,2-diol (7)

To the amine **5** (8.7 g, 24.23 mmol) in a 50% aqueous solution of 1,4-dioxane (100 mL) was successively added Et₃N (5.05 mL, 36.35 mmol) and 2-*tert*-butoxycarbonyloximino-2-phenylacetonitrile (6.56 g, 26.65 mmol) at 20°C. After 4.5 h stirring, and extraction with CH₂Cl₂ (3x100 mL), the organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash chromatography of the residue (EtOAc/cyclohexane 4/6; Rf 0.4) afforded 9.2 g (83%) of **7** (yellow oil). $[\alpha]_D$ +1 (c 1.1, CH₂Cl₂).¹H NMR δ : 7.60, 7.40 (10H, m, Ph), 4.97 (1H, d, NH, J_{3,NH} = 8.6 Hz), 4.00 (1H, m, H-2), 3.90-3.70 (3H, m, H-3,4,4'), 3.65-3.40 (2H, 2m, H-1,1'), 1.40 (9H, s, OtBu), 1.06 (9H, s, SitBu). ¹³C NMR δ : 156.6 (NCO₂) 135.4, 132.7, 129.7, 127.7 (Ph), 79.6 (OCMe₃), 71.4 (C-2), 64.6 (C-1), 63.3 (C-4), 52.2 (C-3), 28.2 (OCMe₃), 26.7 (Me₃CSi).

(2S,3R)-3-N-tert-Butoxycarbonylamino-4-tert-butyldiphenylsilyloxy-1-(o-nitrobenzoyloxy)butan-2-ol (8)

To the diol 7 (9.2 g, 20.1 mmol) in CH₂Cl₂ (70 mL) at 20°C was successively added pyridine (1.76 mL, 22.1 mmol) and 2-nitrobenzoyl chloride (2.64 mL, 20.1 mmol) in CH₂Cl₂ (10 mL). After 4 days stirring, an 2% aqueous solution of H₂SO₄ (70 mL) was added, and the mixture was extracted with CH₂Cl₂ (3x100 mL). The organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash chromatography of the

residue (EtOAc/cyclohexane 3/7; Rf 0.4) afforded 11.8 g (97%) of **8**. $[\alpha]_D$ +1 (c 1.1, CH₂Cl₂). ¹H NMR δ : 7.90, 7.40, (14H, 4m, Ar), 5.04 (1H, d, NH, J_{NH,3} = 7.2Hz), 4.45-4.35 (3H, m, H-1,1',2), 3.90-3.70 (3H, m, H-3,4,4'), 1.40 (9H, s, OtBu), 1.00 (9H, s, SitBu). ¹³C NMR δ : 165.1 (ArCO₂), 155.8 (NCO₂), 148.1, 135.5, 133.0, 131.8, 130.0, 127.8, 123.8 (Ar), 79.7 (OCMe₃), 69.3 (C-2), 67.7 (C-1), 64.8 (C-4), 52.3 (C-3), 28.3 (OCMe₃), 26.8 (Me₃CSi), 19.1(Me₃CSi).

(4R,5S)-3-N-tert-Butoxycarbonyl-4-tert-butyldiphenylsilyloxymethyl-5-hydroxymethyl-2,2dimethyl-1,3-oxazolidine (9)

From 6 :

To the oxazolidine **6** (4.57 g, 11.45 mmol) in CH₂Cl₂ (35 mL) at 0°C was successively added di-*tert*butyl dicarbonate (2.75 g, 12.59 mmol) and NEt₃ (2.38 mL, 17.18 mmol). After 3 days at 20°C, the reaction was quenched with water (50 mL). Extraction with (3x50 mL), drying (Na₂SO₄), filtration, concentration *in vacuo* and flash chromatography (EtOAc/cyclohexane 2/8; Rf 0.4) afforded 2 g (35%) of **9** as a colorless oil.

From the benzoate 8:

A solution of **8** (11.8 g, 19.4 mmol) in acetone (97 mL) at 20°C was successively added 2,2dimethoxypropane (9.5 mL, 77.63 mmol) and BF₃-Et₂O (48 µL, 0.38 mmol). After 5 days at 20°C, concentration, and addition of water (50 mL), the combined organic extracts (CH₂Cl₂, 3x50 mL) were washed, with a saturated aqueous solution of NaHCO₃, dried (Na₂SO₄), filtered and concentred *in vacuo*. Flash chromatography of the residue (EtOAc/cyclohexane 2/8; Rf 0.4) afforded 10.9 g (87%) of the oxazolidine. m.p. 125-126°C. [α]_D +5 (c 1.05, CH₂Cl₂). ¹H NMR (C₆D₆, 70°C) δ : 7.80, 6.60 (14H, 4m, Ar), 4.71 (1H, m, H-5), 4.53 (1H, dd, H-1", J₁", 5 = 4Hz, J₁", 1" = 11Hz), 4.39 (1H, dd, H-1", J₁", 1" = 11Hz, J₁", 5 = 6Hz), 4.05-4.00 (2H,m, H-1'), 3.96 (1H, ddd, H-4, J_{4,5} = 9Hz, J₁', 4 = J₁', 4 = 5Hz), 1.60, 1.58 (6H, 2s, CMe₂), 1.35 (9H, s, OtBu), 1.15 (9H, s, SitBu). ¹³C NMR (C₆D₆, 70°C) δ : 164.9 (Ar<u>C</u>O₂), 158.4 (N<u>C</u>O₂), 149.2, 136.1, 133.9, 131.6, 131.4, 130.0, 123.8 (Ar), 95.5 (C-2), 79.8 (O<u>C</u>Me₃), 76.0 (C-5), 67.4 (C-1"), 63.5 (C-1'), 60.8 (C-4), 28.5 (OC<u>Me₃</u>), 28.0, 27.0 (C<u>Me₂</u>), 27.2 (<u>Me₃CSi</u>), 19.5 (Me₃<u>C</u>Si). MS (EI, %) 633 (1), 535 (90), 491 (20). MS (CI, NH₃) : 649 (M+1)⁻⁺(100). Anal. Calcd. for C₃₅H₄₄N₂O₈Si : C, 64.79; H, 6.84; N, 4.32, Found : C, 64.80; H, 6.89; N, 4.41.

A solution of the previous oxazolidine in a 1/1 mixture of THF/MeOH (168 mL) in presence of K₂CO₃ (194 mg, 1.40 mmol) was stirred during 24 h at 20°C. After concentration *in vacuo*, water (50 mL) was added, and the CH₂Cl₂ extracts (3x70 mL) were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography of the residue (PhCH₃/acetone 95/5; Rf 0.3) afforded 6.70 g (95%) of **9**.

9 : $[\alpha]_D$ -15 (c 1.25, CH₂Cl₂). IR (neat) 1700 cm⁻¹. ¹H NMR (C₆D₆, 70°C) δ : 7.70-7.20 (10H, 2m, Ph), 4.40 (1H, m, H-5), 4.1-3.9 (2H, m, H-1',4), 3.92 (1H, dd, H-1', J_{1',5} = 6Hz, J_{1',1'} = 11Hz), 3.70-3.50 (2H, m, H-1"), 1.66, 1.58 (6H, 2s, CMe₂), 1.32 (9H, s, OtBu), 1.13 (9H, s, SitBu). ¹³C NMR (C₆D₆, 70°C) δ : 152.0 (NCO₂), 136.0, 133.9, 129.7 (Ph), 95.0 (C-2), 79.8 (OCMe₃), 78.9 (C-5), 64.0 (C-1"), 63.7 (C-1'), 60.1 (C-4), 28.5 (OCMe₃), 28.1, 26.9 (CMe₂), 27.2 (Me₃CSi), 19.5 (Me₃CSi). MS (EI, %) 484 (10), 442 (75), 426 (40), 386 (90), 306 (40), 264 (20), 240 (25), 199 (85), 135 (100) . MS (CI, NH₃) : 500 (M+1)⁺⁺(100).

(4R,5S)-3-N-tert-Butoxycarbonyl-4-tert-butyldiphenylsilyloxymethyl-5-formyl-2,2dimethyl-1,3-oxazolidine (10)

To a stirred solution of oxalyl chloride (126μ L, 1.47 mmol) in CH₂Cl₂ (2 mL) at -78°C was slowly added DMSO (208μ L, 2.93 mmol). The resulting complex was stirred for 15 min at -78°C prior to the addition of alcohol **9** (488 mg, 0.98 mmol) in CH₂Cl₂ (5 mL). After 45 min at -65°C, Et₃N (815μ L, 5.87 mmol) was added and, then after 1.5 h, Et₂O (30 mL) was added into the reaction mixture. The salt (Et₃NHCl) was removed by filtration, and the filtrate was concentred *in vacuo* to give **10** (colorless oil) which was used without further purification in the next step.

(4R,5R)-3-N-tert-Butoxycarbonyl-4-tert-butyldiphenylsilyloxymethyl-2,2-dimethyl-5-[(E)-1-pentadecenyl]-1,3-oxazolidine (E-11) and its stereoisomer (Z-11)

To the suspension of the tetradecyltriphenylphosphonium bromide (1.58 g, 2.93 mmol.) in THF (12 mL), at -78°C, was added dropwise n-butylithium (1.5 M in hexane, 1.9 mL, 2.88 mmol.); after 4 h stirring, a solution of the crude aldehyde **10** in THF (10 mL) was added. The temperature was then raised to 20°C for 3 days to achieve the Wittig reaction. Finally the mixture was concentrated *in vacuo* and poured into water (30 mL) and extracted with CH₂Cl₂ (3x60 mL). The organic extracts were dried (Na₂SO₄), filtered, concentrated *in vacuo*, and the residue was purified by flash chromatography (cyclohexane/EtOAc 96/4) to give 622 mg of **11** as an isomer mixture (Z/E 98/2, 95%).

A cyclohexane solution (3.5 mL) of **11** (47 mg, 0.069 mmol) and phenylsulfide (4 mg) was irradied with 100-W high pressure mercury lamp under argon for 2h. The solution was concentrated and chromatographed (EtOAc/cyclohexane 3.5/96.5) to give (**Z-11**) (Rf 0.3, 13 mg, 27%) and (**E-11**) (Rf 0.4, 30 mg, 64%).

(E-11) : $[\alpha]_D$ -11 (c 1.2, CH₂Cl₂). ¹H NMR (C₆D₆, 65°C) δ : 7.77, 7.24 (10H, 2m, Ph), 5.82 (1H, m, H-2"), 5.62 (1H, dd, H-1", J_{1",5} = 6.4Hz, J_{1",2"} = 15.5Hz), 4.89 (1H, dd, H-5, J_{5,4} = J_{1",5} = 6.4Hz), 4.41-4.20 (1H, m, H-1'a), 3.90 (1H, br d, H-1'b, J_{1",1"} = 10Hz), 3.79 (1H, ddd, H-4, J_{4,5} = 6.4Hz, J_{1",4} = 2.8Hz and 3.6Hz), 1.96, (2H, m, H-3"), 1.78, 1.70 (6H, 2s, CMe₂), 1.41 (9H, s, OtBu) 1.39-1.31 (22H, br s, H4"-14"), 1.18 (9H, s, SitBu), 0.89 (3H, t, CH₃, J = 6.8Hz). ¹³C NMR (C₆D₆, 65°C) δ : 152.1 (NCO₂), 136.1, 130.0, 120.1 (Ph), 134.8 (C-1") 128.3 (C-2") 94.6 (C-2), 79.4 (OCMe₃), 78.3 (C-5), 64.3 (C-4), 62.1 (C-1'), 32.6 (C-3"), 30.1, 29.9, 29.7, 29.5, 29.4, 23.0 (C-4"-C14"), 28.5 (OCMe₃), 28.1, 27.0 (CMe₂), 27.2 (Me₃CSi), 19.5 (Me₃CSi), 14.2 (C-15").

(Z-11) : [α]_D -37 (c 1.27, CH₂Cl₂). ¹H NMR (C₆D₆, 65°C) δ : 7.80, 7.23 (10H, 2m, Ph), 5.56 (2H, m, H-1",2"), 5.33 (1H, dd, H-5, J_{5,1}" = 7Hz, J_{5,4} = 5.2Hz), 4.29 (1H, m, H-1'a), 3.84 (2H, m, H-1'b,4), 2.34 (1H, m, H-3"a), 2.14 (1H, m, H-3"b), 1.78, 1.70 (6H, 2s, CMe₂), 1.37 (9H, s, OtBu), 1.31 (22H, br s, H4"-14"), 1.20 (9H, s, SitBu), 0.90 (3H, t, CH₃, J = 6.8Hz). ¹³C NMR (C₆D₆, 65°C) δ : 152.1 (N<u>C</u>O₂), 136.1, 135.3, 130.0, 128.1 (Ph), 135.3 (C-1"), 129.4 (C-2"), 94.6 (C-2), 79.4 (O<u>C</u>Me₃), 72.8 (C-5), 65.0 (C-4), 62.1 (C-1'), 32.3 (C-3"), 30.1, 30.0, 29.9, 29.7, 29.6, 28.2, (C-4"-14"), 28.5 (OC<u>Me₃</u>), 28.2, 27.2 (C<u>Me₂</u>), 27.3 (<u>Me₃CSi</u>), 19.6 (Me₃<u>CSi</u>), 14.2 (C-15"). HMRS for C₃₄H₄₅NO₄Si : (M⁺ - 2 tBu), calcd

563.3431, found 563.3431. Anal. Calcd. for C₄₂H₆₇NO₄Si : C, 74.40; H, 9.96; N, 2.07, Found : C, 74.39; H, 9.59; N, 2.05.

D-threo-Sphingosine

A solution of **E-11** (287 mg, 0.423 mmol) in trifluoroacetic acid/H₂O (v/v : 3/1, 9.3 mL) was stirred at room temperature for 24 h. Aqueous ammonia solution (33%) was then added until pH 8-9, and the resulting mixture was extracted with CH₂Cl₂. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated *in vacuo* and chromatographed (MeOH/CH₂Cl₂/NEt₃ 1/9/1‰, Rf 0.1, then MeOH) to give 95 mg of sphingosine (75%).

[α]_D +4 (c 0.56, CHCl₃). ¹H NMR (pyridine d₅) δ : 5.96 (1H, dt, H-5, J_{5,4} = 15Hz, J_{5,6} = 6Hz), 5.83 (1H, dd, H-4, J_{3,4} = 7Hz, J_{5,4} = 15Hz), 4.91 (1H, t, H-3, J_{3,4} = J_{2,3} = 7Hz), 4.43 (1H, dd, H-1a, J_{1a,1b} = 12Hz, J_{1a,2} = 4Hz), 4.30 (1H, dd, H-1b, J_{1a,1b} = 12Hz, J_{1b,2} = 6Hz), 3.73 (1H, br s, H-2), 2.01 (2H, q, H-6, J_{6,5} = J_{6,7} = 7Hz), 1.23 (22H, br s, H7-17), 0.90 (3H, t, CH₃, J = 6.8Hz). ¹³C NMR (pyridine d₅) δ : 134.5 (C-4), 130.4 (C-5), 70.5 (C-3), 60.2 (C-1), 59.2 (C-2), 32.8 (C-6), 32.2 (C-16), 29.8, 29.7, 29.5, 29.3, 29.2, (C-7-C15), 22.8 (C-17), 14.2 (C-18).

Acetylation of D-threo-sphingosine

To a solution of sphingosine (45 mg, 0.15 mmol) in pyridine (1.2 mL) was added acetic anhydride (1.4 mL) at 20°C. After stirring for 12 h, concentration, addition of a saturated aqueous solution of NaHCO₃, the combined organic extracts (CH₂Cl₂, 3x10 mL) were dried (Na₂SO₄), filtered and concentred *in vacuo*. Flash chromatography of the residue (EtOAc/cyclohexane 6/4; Rf 0.3) and recrystallization (EtOAc/hexane) afforded 38 mg (60%) of the triacetyl derivative of sphingosine. m.p. 43-44°C. $[\alpha]_D$ -8 (c 0.98, CHCl₃). ¹H NMR (pyridine d₅) δ : 5.75 (1H, m, H-5, J_{5,4} = 15Hz), 5.60 (1H, d, NH, J_{NH,2} = 8.8Hz), 5.39 (1H, m, H-3), 5.36 (1H, m, H-4), 4.38(1H, m, H-2), 4.05 (2H, m, H-1), 2.05, 2.04, 1.96 (9H, 3s, CH₃CO), 2.02 (22H, s, H-6-17), 0.85 (3H, t, CH₃, J = 6.8Hz). ¹³C NMR δ : 170.6, 170.1, 169.8 (CH₃CO), 137.3 (C-4), 124.1 (C-5), 73.0 (C-3), 63.1 (C-1), 50.9 (C-2), 32.2, 31.9, 29.7, 29.4, 29.3, 29.1, 28.8, 22.7 (C-6-17), 23.2, 21.0, 20.7, (CH₃), 14.1 (C-18). Anal. Calcd. for C₂₄H₄₃NO₅ : C, 67.73; H, 10.18; N, 3.29, Found : C, 67.74; H, 10.11; N, 3.24.

REFERENCES

- 1. This work was presented at the JCO 95 meeting, Palaiseau (France) september 1995.
- For precedent syntheses of 2-deoxy-2-amino or 3-deoxy-3-aminotetroses, see : Guanti, G.; Banfi, L.; Narisano, E. *Tehadredron Lett.* 1989, 30, 5507-5510 and references cited therein.
- a) Merril, A.H.; Nimkar, S.; Menaldino, D.; Hannun, Y.A.; Loonis; C.; Bell, R.M.; Tyagi, S.R.; Lambeth, J.D.; Stevens, V. L.; Hunter, R.; Liotta, D.C. *Biochemistry* 1989, 28, 3138-3145. b)

Devant, R.M.; *Kontakte (Darmstadt)* **1992**, (3), 10-28 and references cited therein. c) Schmidt, R.M.; Bär, T.; Wild, R. *Synthesis* **1995**, 868-876 and references cited therein.

- For precedent syntheses of *D-threo-sphingosine*, see : a) Takano, S.; Iwabuchi, Y.; Ogasawara, K.
 J. Chem. Soc. Chem. Commun. 1991, 820- 821. b) Shibuya, H.; Kawashima, K.; Narita, N.; Ikeda, M.; Kitagawa, I. *Chem. Pharm. Bull.* 1992, 40, 1154-1165.
- a) Bunnage, M.E.; Burke, A.J.; Davies, S.G.; Goodwin, G.J. Tetrahedron Asymmetry 1995, 6, 165-182. b) Matsuura, F.; Hamada, Y.; Shioiri, T. Tetrahedron 1994, 50, 11303-11314.
- 6. Gravier-Pelletier, C.; Dumas, J.; Le Merrer, Y.; Depezay, J-C. J. Carbohydr. Chem. 1992, 11, 969-998.
- 7. Wagner, R.; Tilley, J.W.; Lovey, K. Synthesis 1990, 785-786.
- 8. Itoh, M.; Hagiwara, D.; Kamiya, T. Tetrahedron Lett. 1975, 4393-4396.
- 9. For all compounds which have been an oxazolidine structure (6,9,10 and 11), the numbering of carbons has been indicated on the formula of 9 (see scheme 4).
- 10. Schmidt, U.; Meyer, R.; Leitenberger, V.; Stäbler, F.; Leiberknecht, A. Synthesis 1991, 409-413.
- 11. Tidwel, T.T.; Organic Reactions, Vol. 39 John Wiley and Sons Inc. 1990 p. 297-572
- 12. Li, Y-L.; Sun, X-L.; Wu, Y-L. Tetrahedron 1994, 50, 10727-10738.
- 13. $[\alpha]_D$ -8 (c 0.98, CHCl₃) ; m.p. 43-44°C. lit.⁴a $[\alpha]_D$ -8.9 (c 0.79, CHCl₃); m.p. 41-42°C lit.⁴b $[\alpha]_D$ -8.9 (c 0.9, CHCl₃) ; m.p. 41-42°C.
- 14. Papa A.J. J. Org. Chem. 1966, 31, 1426-1427.

(Received in UK 22 January 1996)